HydroQuakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron

2020 ◽  
pp. 125754
Author(s):  
Stefania Franchini ◽  
Samuele Agostini ◽  
Marino Domenico Barberio ◽  
Maurizio Barbieri ◽  
Andrea Billi ◽  
...  
2020 ◽  
Author(s):  
Andrea Billi ◽  
Stefania Franchini ◽  
Marino Domenico Barberio ◽  
Maurizio Barbieri ◽  
Tiziano Boschetti ◽  
...  

<p>The aim of this work is to provide a methodology for the investigation of seismic precursors starting from hydrogeological, hydrogeochemical, and seismic study of the territory. Hydrological effects originated during the seismic cycle (particularly prior to and during strong earthquakes) have long been observed and documented, as they are among the most outstanding coseismic phenomena that can be even observed over great distances. Moreover, since a few decades, geochemical changes of groundwater prior to intermediate and/or strong (Mw ≥ 5.0) earthquakes have started to be a concrete hope and, at the same time, a big scientific and technological challenge for geoscientists working in the field of seismic precursors. Deformation and stress perturbation during the seismic cycle can cause changes in deep fluid migration eventually leading to changes in shallower groundwater circulation and geochemistry. As monitoring sites, we identified the Sulmona and Matese areas in the central-southern Apennines. These two areas were affected in the past by Mw > 5.5 earthquakes. Each study area includes 5-6 monitored springs and boreholes. Groundwaters are mainly calcium-bicarbonate type or secondarily sulphate-calcium-bicarbonate type. Continuous monitoring and monthly sampling of the two study areas started in December 2017, although in the Sulmona area they had already started in 2014 for a previous project, whose results have been published in previous papers. In an attempt to identify potential seismic precursors, we carried out, for each monitored spring, analyses of major and trace elements and analyses of isotopes of the water molecule, boron, and strontium. During these years of monitoring (2018-2019), there were no high magnitude earthquakes. The three seismic events with the highest magnitude were indeed the 2019 Collelongo (Mw 4.1, January 1<sup>st</sup>), Balsorano (Mw 4.4, November 7<sup>th</sup>), and San Leucio del Sannio (Mw 3.9, December 16<sup>th</sup>) earthquakes. The most interesting result is that these earthquakes (except Collelongo) were not substantially preceded by hydrogeochemical anomalies. This evidence suggests that this type of pre-seismic anomalies could arise substantially only with intermediate and strong earthquakes (Mw≥5.0); however, it is also true that the Collelongo earthquake, which occurred on a very large Apennine normal fault (the fault that generated the great Avezzano earthquake of 1915, Mw 7.0) at great depths - about 16-17 km -, was preceded by very weak hydrogeochemical anomalies of Li, B, and Sr in most monitored springs. These weak anomalies could be related to pre-seismic breakages at great crustal depths along a very large fault. We also describe the monitoring stations as well as the used instrumentations, procedures, and analyses. We propose some preliminary results that emphasize the importance of collecting data from a widespread network of monitoring stations over a seismic territory and for long time. HydroQuakes provides new evidence for the importance of building a national hydrogeochemical network for the identification of seismic precursors. Future possible implementations as well as further societal uses for such a network are also addressed. The HydroQuakes Project is funded by Fondazione ANIA to CNR-IGAG.</p>


2019 ◽  
Vol 41 (4) ◽  
pp. 85-102 ◽  
Author(s):  
A.V. Iatsyshyn ◽  
◽  
Yu. G. Kutsan ◽  
V.O. Artemchuk ◽  
I.P. Kameneva ◽  
...  

2017 ◽  
Author(s):  
Aram Abdulqadir ◽  
Mohammed Shukur
Keyword(s):  

Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2019 ◽  
Vol 32 (3-4) ◽  
pp. 179-185
Author(s):  
Zhen-xuan Zou ◽  
◽  
Ming Zhang ◽  
Xu-dong He ◽  
Sheng-fa Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document