The probability distribution of daily streamflow in perennial rivers of Angola

2021 ◽  
Vol 603 ◽  
pp. 126869
Author(s):  
Manuel Almeida ◽  
Sandra Pombo ◽  
Ricardo Rebelo ◽  
Pedro Coelho
2017 ◽  
Vol 21 (6) ◽  
pp. 3093-3103 ◽  
Author(s):  
Annalise G. Blum ◽  
Stacey A. Archfield ◽  
Richard M. Vogel

Abstract. Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.


2016 ◽  
Author(s):  
Annalise G. Blum ◽  
Richard M. Vogel ◽  
Stacey A. Archfield

Abstract. One of the most commonly used tools in hydrology, empirical flow duration curves (FDCs) characterize the frequency with which streamflows are equaled or exceeded. Finding a suitable probability distribution to approximate a FDC enables regionalization and prediction of FDCs in basins that lack streamflow measurements. FDCs constructed from daily streamflow observations can be computed as the period-of-record FDC (POR-FDC) to represent long-term streamflow conditions or as the median annual FDC (MA-FDC) to represent streamflows in a typical year. The goal of this study is to identify suitable probability distributions for both POR-FDCs and MA-FDCs of daily streamflow for unregulated and perennial streams. Comparisons of modeled and empirical FDCs at over 400 unregulated stream gages across the conterminous United States reveal that both the four-parameter kappa (KAP) and three-parameter generalized Pareto (GPA3) distributions can provide reasonable approximations to MA-FDCs; however, even four and five-parameter distributions are unable to capture the complexity of the POR-FDC behavior for which flows often range over five or more orders of magnitude. Regional regression models developed for the mid-Atlantic and Missouri regions as case studies present a simple and practical method to predict MA-FDCs at ungaged sites, which can be accurately predicted more consistently compared to POR-FDCs.


2021 ◽  
Author(s):  
Srinivasa Murthy D ◽  
Aruna Jyothy S ◽  
Mallikarjuna P

Abstract The study aims at the probabilistic analysis of annual maximum daily streamflows at the gauging sites of Godavari upper, Godavari middle, Pranahitha, Indravathi and Godavari lower sub-basins. The daily streamflow data at Chass, Ashwi and Pachegaon of Godavari upper, Manjalegaon, Dhalegaon, Zari, GR Bridge, Purna and Yelli of Godavari middle, Gandlapet, Mancherial, Somanpally and Perur of Pranahitha, Pathagudem, Chindnar, Sonarpal, Jagdalpur and Nowrangpur of Indravathi, and, Sardaput, Injaram, Konta, Koida and Polavaram of Godavari lower sub-basins for the period varying between 1965–2011, collected from Central Water Commission (CWC), India were used in the analysis. Statistics of annual maximum daily streamflow series during the study period at the gauging sites of sub-basins indicated moderately variedand positively skewed streamflows, and flows with sharp peaks at the upstream gauging sites. Probabilistic analysis of streamflows showed that lognormal or gamma distribution with conventional moments fitted the maximum daily streamflow data at the gauging sites of Godavari sub-basins.Among 2-parameter distributions with L-moments,GPA2 followed by GAM2/LN2 fitted annual maximum daily streamflow data at most of the gauging sites.At the downstream-most gauging sites of Pranahitha, Indravathi and Godavari lower sub-basins, the data followed W2 probability distribution. Among 3-parameter distributions with L-moments, GPA3 at seven gauging sites, W3 and P3 at five gauging sites each, GLOG at four gauging sites and GEV at two gauging sites fitted the data. Based on the performance evaluation, 2 – parameter distributions using L-moments at the upstream, 3 – parameter distributions at the middle and probability distributions using conventional moments at the downstreamgauging sites performed better in the Godavari upper and middle sub-basins. Probability distributions based on conventional moments/ 3-parameter distributions using L-momentsfitted the annual maximum daily streamflow data at the gauging sites in the Pranahitha, Indravathi and Godavari lower sub-basins satisfactorily.


2010 ◽  
Vol 35 (4) ◽  
pp. 543-550 ◽  
Author(s):  
Wojciech Batko ◽  
Bartosz Przysucha

AbstractAssessment of several noise indicators are determined by the logarithmic mean <img src="/fulltext-image.asp?format=htmlnonpaginated&src=P42524002G141TV8_html\05_paper.gif" alt=""/>, from the sum of independent random resultsL1;L2; : : : ;Lnof the sound level, being under testing. The estimation of uncertainty of such averaging requires knowledge of probability distribution of the function form of their calculations. The developed solution, leading to the recurrent determination of the probability distribution function for the estimation of the mean value of noise levels and its variance, is shown in this paper.


2019 ◽  
Vol 13 (2) ◽  
pp. 36-51 ◽  
Author(s):  
O. M. Makarieva ◽  
N. V. Nesterova ◽  
G. P. Yampolsky ◽  
E. Y. Kudymova

Abstract: the article presents the results of application of distributed deterministic hydrological model Hydrograph for estimation of maximum discharge values of different frequency at the ungauged catchment of the Khemchik River (Khemchik village, Tuva Republic). The catchment area is 1750 km2 , the average and maximum elevation — 2200 and 3600 m, respectively. Due to the lack of detailed information, a schematization of the catchment and the parameterization of the model are proposed, based on general ideas about the water balance and the processes of runoff formation of the main landscapes — rocky talus, coniferous forest and steppe. Parameters and algorithms are verified based on the results of streamflow modeling at two studied catchments: the Tapsy River — Kara-Khol (302 km2 ) and the Khemchik River — Iyme (25500 km2 ). Modelling of runoff formation processes with daily time step for the Khemchik River — Khemchik village was conducted for the period 1966–2012 using observational data at Teeli meteorological station. For the transition from daily to instant discharges, the dependence of the observed values of instant and daily streamflow at the studied gauges has been applied. On the basis of simulated discharge series, the frequency curve was built and the obtained curve was compared with the calculation data according to the standard methodology SP 33-101-2003 “Determination of the main calculated hydrological characteristics” using the analogue river. Simulated maximum instant discharges for entire frequency interval of up to 1% are 1.3–5 times higher than the values obtained by standard methodology SP 33-101-2003. The results of model calculations is indirectly confirmed by the evidences of regular flooding of the Khemchik village provided by the Ministry of Emergency Situations of the Tuva Republic, which is not predicted by the values obtained by the standard methods.


GIS Business ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 42-52
Author(s):  
Sadullayev Nasillo Nematovich ◽  
Safarov Alisher Bekmurodovich ◽  
Nematov Shuhrat Nasilloyevich ◽  
Mamedov Rasul Akif- Ogli

This article assesses the wind speed data and wind energy potential in the Bukhara region of Uzbekistan. In article it is stated a principle construction "hybrid" a source of the electric power consisting from wind power installation with mechanical store of energy, the solar panel with аккумулятор in common working with an electric network. The speed and direction of the wind measured at a height of 10 m were analyzed by the Weibull probability distribution functionTo determine the direction of wind flow (wind rose), a graph in Matlab environment was constructed. The method of an estimation energy of efficiency of the objects eating from several energy sources is offered. It is proved efficiency of application of such source of the electric power low power consumers


Sign in / Sign up

Export Citation Format

Share Document