scholarly journals Bacteria and fungi in acute cholecystitis. A prospective study comparing next generation sequencing to culture

2020 ◽  
Vol 80 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Ruben Dyrhovden ◽  
Kjell Kåre Øvrebø ◽  
Magnus Vie Nordahl ◽  
Randi M. Nygaard ◽  
Elling Ulvestad ◽  
...  
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
H Asakura ◽  
Y Nakahara ◽  
Y Nagai ◽  
Y Sakuraba

Abstract Study question A prospective study to investigate the relationship between the composition of vaginal microbiota through next-generation sequencing and the efficacy of single frozen blastocyst transfer in the same cycle. Summary answer Dominant presence of lactobacillus and other lactate producing microbes in the upper vagina was highly correlated with implantation of transferred blastocyst in this pilot study. What is known already Next-generation sequencing of 16S rRNA detected microbes in the uterine cavity and recent studies indicated that dominant presence of Lactobacillus correlated highly with successful implantation of the transferred embryos. Aberrant vaginal microbiota has been known to cause poor obstetrical outcomes, however little is known for its effect on embryo implantation in assisted reproduction. Study design, size, duration A prospective study with 25 female subjects transferring a frozen blastocyst using autologous oocyte, over 14 months period in 2019-2020. Participants/materials, setting, methods 25 female patients without tubal and uterine pathology and no history of multiple miscarriages and implantation failures were recruited with consent at a private ART clinic. Transdermal estrogen was used to prepare endometrium. Upper vaginal fluid was obtained in follicular phase of the the same cycle and analyzed through next-generation sequencing, but the result was reported after pregnancy confirmation. Single frozen blastocyst transfer and standard luteal phase support were performed. Institutional IRB approved the protocol. Main results and the role of chance The mean age was 36.2 y.o.(range 29-41 y.o.), and 14 gestational sacs (implantation rate 56%), and 3 miscarriage (21.4%) were observed. Next-generation sequencing for 16S rRNA revealed average 69.2% presence of Lactobacillus (0-100%) and average 78.0% (0.2-100%) lactate producing microbes (LPM: Lactobacillus, Bifidobacterium, Streptococcus, and Enterococcus) in the vaginal fluid. Using 90% as cut-off, implantation rates were 11/15 (73.3%) and 3/10 (30%) with Lactobacillus dominant and non-dominant, 12/16 (75%) and 2/9 (22.2%) with LPM dominant and non-dominant microbiota, respectively. The difference in each group were not statistically significant. The relative risks for pregnancy were 2.63 (95%CI 1.03-6.67, P=0.04) for Lactobacillus and 3.11 (95%CI 1.24-7.79, P=0.02) for LPM. As for ROC analysis for embryo implantation and dominant microbes, AUC and associated criterion were 0.62 and 90.7% (sensitivity 78.6%, specificity 72.7%) for Lactobacillus, 0.69 and 96.6% (sensitivity 85.7%, specificity 72.7%) for LPM, respectively. The difference of AUC was not significant (P=0.24). Limitations, reasons for caution Despite prospective nature of the study, small sample size limited the analytical power of the study. Aneuploidy screening was not performed to remove confounding factor. Wider implications of the findings Our pilot study revealed possible relationship between vaginal microbiota and embryo implantation. Dominance of Lactobacillus or other lactate producing microbes may be advantageous for successful ART. Sampling vaginal fluid for microbe analysis is less invasive than endometrial sampling and can obtain more abundant RNA with possible higher accuracy of analysis. Trial registration number not applicable


2017 ◽  
Vol 152 (5) ◽  
pp. S296
Author(s):  
Aatur Singhi ◽  
Herbert J. Zeh ◽  
Marina N. Nikiforova ◽  
Jennifer S. Chennat ◽  
Asif Khalid ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 2309
Author(s):  
Wang-Da Liu ◽  
Ting-Yu Yen ◽  
Po-Yo Liu ◽  
Un-In Wu ◽  
Prerana Bhan ◽  
...  

Background: Sepsis remains a common but fatal complication among patients with immune suppression. We aimed to investigate the performance of metagenomic next-generation sequencing (mNGS) compared with standard microbiological diagnostics in patients with hematologic malignancies. Methods: We performed a prospective study from June 2019 to December 2019. Adult patients with hematologic malignancies and a clinical diagnosis of sepsis were enrolled. Conventional diagnostic methods included blood cultures, serum galactomannan for Aspergillus, cryptococcal antigen and cytomegalovirus (CMV) viral loads. Blood samples for mNGS were collected within 24 h after hypotension developed. Results: Of 24 patients enrolled, mNGS and conventional diagnostic methods (blood cultures, serology testing and virus RT-PCR) reached comparable positive results in 9 cases. Of ten patients, mNGS was able to identify additional pathogens compared with conventional methods; most of the pathogens were virus. Conclusion: Our results show that mNGS may serve as adjunctive diagnostic tool for the identification of pathogens of hematologic patients with clinically sepsis.


2020 ◽  
Vol 13 (10) ◽  
Author(s):  
Yuan Fang ◽  
Tao Wang ◽  
Li Jin ◽  
Zhi-Tao Li ◽  
Jian-Qing Zhang ◽  
...  

Background: Bloodstream infection (BSI) has been one of the biggest headaches for clinicians, as it not only aggravates symptoms but also increases the length of stay, the cost of hospitalization, and the side effects caused by antibiotics. It is an urgent need for clinicians to develop timely and accurate methods to find microorganisms. Currently, the gold standard for diagnosing BSI is blood culture, but it takes three to eight days to produce results, and its positive rate is extremely low. Next-generation sequencing (NGS) has emerged as a better technology desperately needed by doctors and patients to diagnose BSI. Objectives: This study compared NGS and blood culture methods in clinical patients with BSI. Methods: In this study, blood culture and NGS were used to analyze the blood of patients with BSI in different departments of the First Affiliated Hospital of Kunming Medical University. Results: Next-generation sequencing detected 60 pathogens in 63 blood samples, while blood culture detected 15 pathogens in 336 blood samples from 63 patients who were clinically considered to be infected. Pathogens detected by NGS included bacteria, fungi, and viruses, while blood culture only found bacteria and fungi. The positive rates of blood culture diagnosis and NGS diagnosis in BSI patients were 23.8% (15/63) (CI: 13.3% - 34.3%) and 95% (60/63) (CI: 90% - 100%), respectively. Conclusions: Our results showed that NGS creates a new diagnostic platform for patients with BSI. Its wide detection range, high positive rate, and characteristics of rapid detection will benefit patients with BSI.


Sign in / Sign up

Export Citation Format

Share Document