scholarly journals Security analysis and enhancements of an image cryptosystem based on hyperchaotic system

Author(s):  
Musheer Ahmad ◽  
M.N. Doja ◽  
M.M. Sufyan Beg
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xuncai Zhang ◽  
Lingfei Wang ◽  
Ying Niu ◽  
Guangzhao Cui ◽  
Shengtao Geng

In this paper, an image encryption algorithm based on the H-fractal and dynamic self-invertible matrix is proposed. The H-fractal diffusion encryption method is firstly used in this encryption algorithm. This method crosses the pixels at both ends of the H-fractal, and it can enrich the means of pixel diffusion. The encryption algorithm we propose uses the Lorenz hyperchaotic system to generate pseudorandom sequences for pixel location scrambling and self-invertible matrix construction to scramble and diffuse images. To link the cipher image with the original image, the initial values of the Lorenz hyperchaotic system are determined using the original image, and it can enhance the security of the encryption algorithm. The security analysis shows that this algorithm is easy to implement. It has a large key space and strong key sensitivity and can effectively resist plaintext attacks.


2015 ◽  
Vol 719-720 ◽  
pp. 1030-1037
Author(s):  
Tao Song

In recent years, chaos-based image encryption technologies have been widely studied to meet the increasing demand for real-time secure image transmission applications. To overcome the drawbacks of small key space and weak security in many existing schemes based on low-dimensional chaotic maps, this paper suggests a security improved scheme with a permutation-diffusion architecture. In the permutation stage, baker map is employed to shuffle the pixel positions. In the diffusion stage, the value of each pixel is altered by using a key stream derived from hyperchaotic system. Compared with ordinary chaotic systems, hyperchaotic systems, with more complex dynamical behaviors and number of system variables, offer greater potential for secure cryptosystem construction. Extensive security analysis has been performed on the proposed scheme, including the most important ones like key space analysis, statistical analysis and key sensitivity, which has demonstrated the satisfactory security of the proposed scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Adrian-Viorel Diaconu ◽  
Khaled Loukhaoukha

A recently proposed secure image encryption scheme has drawn attention to the limited security offered by chaos-based image encryption schemes (mainly due to their relatively small key space) proposing a highly robust approach, based on Rubik's cube principle. This paper aims to study a newly designed image cryptosystem that uses the Rubik's cube principle in conjunction with a digital chaotic cipher. Thus, the original image is shuffled on Rubik's cube principle (due to its proven confusion properties), and then XOR operator is applied to rows and columns of the scrambled image using a chaos-based cipher (due to its proven diffusion properties). Finally, the experimental results and security analysis show that the newly proposed image encryption scheme not only can achieve good encryption and perfect hiding ability but also can resist any cryptanalytic attacks (e.g., exhaustive attack, differential attack, statistical attack, etc.).


2021 ◽  
Vol 31 (07) ◽  
pp. 2150099
Author(s):  
Dengwei Yan ◽  
Lidan Wang ◽  
Shukai Duan ◽  
Jiahao Chen

Memristor, as a nonlinear element in nanometer size, is feasible to generate chaotic signals. Especially, it can improve the randomness of the signals and the complexity of chaotic systems. A novel multiscroll hyperchaotic system based on the flux-controlled memristor is designed. Its twin system with a different topological structure is obtained by varying only the flux variable of the memristor, which is a considerable difference from other chaotic systems existing in the literature. Scroll numbers of the proposed system and its twin, especially, are sensitive to the system parameters. To further investigate the characteristics of the system and its twin, their behaviors with respect to the strengths of the memristor, simulation time and coexistence of multiscroll hyperchaotic attractors are analyzed. Moreover, complex dynamical behaviors of the system and its twin are analyzed by phase diagrams, Poincaré cross-sections, Lyapunov indexes, power spectra, 0-1 test diagrams, and time series. Finally, a novel image encryption scheme is proposed based on the system and its twin. The system and its twin have independent key spaces, and the proposed algorithm makes them have an intersection, which greatly improves the key spaces. In addition, the security and reliability of the image encryption algorithm are demonstrated by different security analysis methods, including correlation analysis, robustness analysis and information entropy test. The results of all experiments prove that the proposed image encryption scheme is superior to other existing ones.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jingru Sun ◽  
Mu Peng ◽  
Fang Liu ◽  
Cong Tang

As computational ghost imaging is widely used in the military, radar, and other fields, its security and efficiency became more and more important. In this paper, we propose a compressive ghost imaging encryption scheme based on the hyper-chaotic system, DNA encoding, and KSVD algorithm for the first time. First, a 4-dimensional hyper-chaotic system is used to generate four long pseudorandom sequences and diffuse the sequences with DNA operation to get the phase mask sequence, and then N phase mask matrixes are generated from the sequences. Second, in order to improve the reconstruction efficiency, KSVD algorithm is used to generate dictionary D to sparse the image. The transmission key of the proposed scheme includes the initial values of hyper-chaotic and dictionary D, which has plaintext correlation and big key space. Compared with the existing compressive ghost imaging encryption scheme, the proposed scheme is more sensitive to initial values and more complexity and has smaller transmission key, which makes the encryption scheme more secure, and the reconstruction efficiency is higher too. Simulation results and security analysis demonstrate the good performance of the proposed scheme.


2021 ◽  
Author(s):  
Hongwei Xie ◽  
Yuzhou Zhang ◽  
Hao Zhang ◽  
Zhenyu Li

Abstract This paper proposes a novel medical image encryption method based on fast and robust fuzzy C-means clustering image segmentation method and deoxyribonucleic acid encoding. Firstly, the plain medical image is split to interested pixels and uninterested pixels, respectively. Then, the uninterested 0-value pixels are abandoned to reduce the pixels in encryption. Secondly, for the interested pixels, some low-value pixels are also discarded by image segmentation to further reduce the encryption time. Thirdly, a 4-dimensional hyperchaotic system is utilized to process the main pixels of medical image with deoxyribonucleic acid encoding. Finally, lossless encryption and fast encryption are done for different purposes and security analysis shows that the encryption method is robust and secure to resist various attacks.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 399 ◽  
Author(s):  
Congxu Zhu ◽  
Guojun Wang ◽  
Kehui Sun

This article performs the cryptanalysis of an image encryption algorithm using an S-box generated by chaos. The algorithm has the advantages of simple structure, high encryption efficiency, and good encryption performance. However, an attentive investigation reveals that it has some undiscovered security flaws. The image cryptosystem is totally breakable under proposed chosen-plaintext attack, and only two chosen plain-images are required. An array equivalent to the S-box is constructed by an elaborately designed chosen-plaintext image, and the cipher-image is deciphered without having to know the S-box itself. Both mathematical deduction and experimental results validate the feasibility of the attacking scheme. Furthermore, an improved encryption scheme is proposed, in which a feedback mechanism is introduced, a bidirectional diffusion scheme is designed, and values of the ciphertext are associated with more parameters in each diffusion process. Testing results and security analysis verify that the improved cryptographic system can achieve a higher security level and has a better performance than some of the latest encryption algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 258
Author(s):  
Heping Wen ◽  
Chongfu Zhang ◽  
Lan Huang ◽  
Juxin Ke ◽  
Dongqing Xiong

Fractional-order chaos has complex dynamic behavior characteristics, so its application in secure communication has attracted much attention. Compared with the design of fractional-order chaos-based cipher, there are fewer researches on security analysis. This paper conducts a comprehensive security analysis of a color image encryption algorithm using a fractional-order hyperchaotic system (CIEA-FOHS). Experimental simulation based on excellent numerical statistical results supported that CIEA-FOHS is cryptographically secure. Yet, from the perspective of cryptanalysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack method owing to its some inherent security defects. Firstly, the diffusion part can be eliminated by choosing some special images with all the same pixel values. Secondly, the permutation-only part can be deciphered by some chosen plain images and the corresponding cipher images. Finally, using the equivalent diffusion and permutation keys obtained in the previous two steps, the original plain image can be recovered from a target cipher image. Theoretical analysis and experimental simulations show that the attack method is both effective and efficient. To enhance the security, some suggestions for improvement are given. The reported results would help the designers of chaotic cryptography pay more attention to the gap of complex chaotic system and secure cryptosystem.


2021 ◽  
Author(s):  
Fatma Mohamed Kamal ◽  
Ahmed Elsaid ◽  
Amr Refaat Elsonbaty

Abstract In this paper, the occurrence of ghost attractor is verified in three cases of a proposed fractional order Rössler blinking system. Firstly, the dynamical behaviors of the short memory fractional order prototype-4 Rössler system with Chua’s diode are explored via bifurcation diagrams and Lyapunov exponents. It is depicted that this system exhibits a variety of dynamics including limit cycles, period doubling and chaos. Then, a proposed non-autonomous fractional order Rössler blinking system is introduced. Numerical simulations are employed to confirm the existence of ghost attractors at specific cases which involve very fast switching time between two composing autonomous fractional subsystems. It is found that the presented fractional order blinking system is very sensitive to system parameters, initial conditions and stochastic process parameters. Thus, the induced chaotic ghost attractor is utilized in a suggested ghost attractor-based chaotic image encryption scheme for first time. Finally, a detailed security analysis is carried out and reveals that the proposed image cryptosystem is immune against different types of attacks such as differential attacks, brute force attacks, cropping and statistical attacks.


Sign in / Sign up

Export Citation Format

Share Document