Fabrication of metal-matrix AL7075T651/TiN nano composite employing friction stir process

Author(s):  
Khalid A Al-Ghamdi ◽  
G Hussain ◽  
R Hashemi

Friction stir processing is a novel material fabrication technique. This study was undertaken in order to investigate a suitable set of friction stir processing parameters to form AL7075T651/TiN nano composite. A number of samples were produced by varying the process parameters, namely, tool-pin geometry, number of passes and the direction of tool rotation. The pin geometries employed include triangular, square and threaded taper; the passes were varied over two levels (i.e. 2 and 4) and the tool rotation was changed as clockwise and counter clockwise between the successive passes. The effect of these variations on the composite was quantified through several microstructural and mechanical tests. The increase in the number of passes was observed to improve various characteristics of the composite (i.e. distribution of TiN particles, grain refinement and mechanical properties). The effect of tool geometry, however, was associated with the choice of the number of passes. The change in the direction of tool rotation between the consecutive passes was witnessed to improve the distribution of TiN particles. From the X-ray diffraction analysis of the samples, the formation of several new phases was detected. These were found to have effect on the mechanical properties of the composite. A good trade-off among various properties of the composite (i.e. hardness, tensile strength and ductility) was realized when the friction stir processing was performed using square tool and employing four passes with simultaneously changing the direction of tool rotation between the successive passes. This study is the first report on the fabrication of AL7075T651/TiN nano composite through friction stir processing route.

2020 ◽  
Vol 44 (6) ◽  
pp. 421-426
Author(s):  
Ashish Kumar Srivastava ◽  
Nagendra Kumar Maurya ◽  
Manish Maurya ◽  
Shashi Prakash Dwivedi ◽  
Ambuj Saxena

The application range in defense, aerospace and automotive sectors have enabled aluminium metal matrix composites to emerge in different technological fields due to enhanced micro structural and mechanical characteristics. In the present study, friction stir processing is used to fabricate Al2024/SiC composite with one, two and three passes of the cylindrical tool. Optical microscopy and scanning electronic microscope (SEM) were used to validate the processed sample and to justify the morphological aspects. Energy dispersive spectroscopy (EDS) analysis has also performed to confirm the presence of SiC particles in the composite. It also includes the analysis of mechanical properties such as tensile strength, Rockwell hardness test and nanoindentation to characterize the prepared samples. Improvement in tensile strength with a maximum of 443 MPa, the hardness of 121 HRB and nanoindentation of the specimen was depicted through the mechanical tests.


2014 ◽  
Vol 592-594 ◽  
pp. 499-503
Author(s):  
L. Suvarna Raju ◽  
A. Kumar ◽  
S. Rajendra Prasad

Abstract. Conventional welding of copper and its alloys tends to degrade the mechanical strength at the welded area due to high thermal diffusivity and melting point. Friction stir welding (FSW) is an excellent alternative for joining of these materials against fusion joining. FSW is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The main objective of this investigation is to use FSW for joining of 3 mm thick copper sheet using taper cylindrical tool pin profile. The defect free welds were obtained at a tool rotational speed of 900rpm and 1120 rpm and traverse speeds of 25, 31.5, 40 and 50 mm/min respectively. Mechanical and microstructure analysis has been performed to evaluate the characteristics of friction stir welded copper. From the investigation it is found that the joints fabricated at a tool rotation speed of 900 rpm and traverse speed of 40mm/min resulted in better mechanical properties compared to other tool rotation and traverse speeds. The tensile properties of all the weld joints showed a relative correspondence to the variation of the hardness in the weld zone. The observed results were correlated with the microstructure and fracture features.


Author(s):  
Sachin Rathore ◽  
Ratnesh Kumar Raj Singh ◽  
Kunwar Laiq Ahmad Khan

The underwater friction stir processing is used for development of aluminum metal matrix composite (AA2219-Y2O3) foam. For development of foam, holes with different diameter in the mid thickness of plate were filled with a mixture of TiH2 and aluminum powder and underwater friction stir processing was used to mix this mixture in aluminum metal matrix composite. Then precursors extracted from the processed zone and heated upto 650°C in a furnace for development of foam. The effect of diameter of hole, number of passes and the tool rotation direction has been studied on the foam cell size and static and dynamic compressive behavior of the foam. It is found that as the diameter of hole increases, the size of pores increases. The distribution of pores is better with higher number of passes and increasing the hole diameter. The quality of foam further improves by reversing the tool rotation direction. The developed foam has different pore size varies from 0.7 to 2.7 mm depends on the FSP parameters. Based on the size of pores and their distribution the relative density ranges from 0.1 to 0.78. The foam produced with 4 mm hole diameter has best static and dynamic compression properties.


2014 ◽  
Vol 61 (3) ◽  
pp. 455-468
Author(s):  
Hiralal Subhash Patil ◽  
Sanjay N. Soman

Abstract Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal) have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.


2012 ◽  
Vol 585 ◽  
pp. 397-401 ◽  
Author(s):  
M. Govindaraju ◽  
K. Rao Prasad ◽  
Uday Chakkingal ◽  
K. Balasubramanian

Friction stir processing is applied for property improvement of cast alloys for last two decades and many developmental studies were carried out in this topic on various alloys. In the current work, friction stir processing was carried out on rare earth containing magnesium alloy AE42. This alloy was specially developed for automobile application as it has better creep resistance than commercial magnesium alloys. Multi-pass Friction Stir Processing was carried out with varying the distance between passes from 0.5 mm to 2.5 mm using 12 mm shoulder diameter tool. Pin was with conical (tapered) and flat configurations with 3 mm height. After processing, the resultant mechanical and metallurgical properties were evaluated. Microstructure was refined to 5 micron and the secondary phases were made in to tiny pieces of 0.5-1 micron and evenly distributed in the matrix. Continuous network of grain boundary which is reason for poor mechanical properties was eliminated. Mechanical properties were improved by 30%. The variation of mechanical properties of processed material with respect to variation of distance between passes was negligible from 1 mm to 1.5 mm for flat pin tool.


2015 ◽  
Vol 799-800 ◽  
pp. 434-438 ◽  
Author(s):  
H.A.D. Hamid ◽  
A.A. Roslee

This paper presents an investigation of research objectives on the effect of tilt angle on microstructure and mechanical properties of dissimilar aluminum alloy sheets between AA5083 and AA6061, 5mm plates by using Friction Stir Welding (FSW) process in butt joint. The base materials of AA5083 and AA6061 were located on the retreating side (RS) and advancing side (AS), respectively. The welding process and the welding parameters such as tool pin profile, tool rotation speed, welding speed and tilt angle influenced the mechanical properties of the Friction Stir Welding joints significantly. For this experiment, the Friction Stir Welding materials joined under five different tilt angles (from 0oto 4o) with 86mm/min of welding speed and 910 rpm of tool rotation speed which were set similarly. Microscopic examination on the weld samples showed significant variation in the microstructure especially in the region of heat-affected zone (HAZ), weld nugget or dynamically recrystallized zone (DXZ) and in the base metal.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 298 ◽  
Author(s):  
Jian Wang ◽  
Yun Cheng ◽  
Bo Li ◽  
Cheng Chen

Steel cuttings, holes and cracks always exist at the interfaces in the composite plate. Multi-pass friction stir processing (M-FSP) is proposed in this research to optimize the interface microstructure and the interface connection for the 1060Al/Q235 composite plate. Results show that the microstructures of 1060Al after M-FSP are fine and uniform owing to the strong stirring effect and recrystallization. Micro-defects formed by the welding can be repaired by the M-FSP. However, tunnel defects can also be formed in the matrix of aluminum by M-FSP, especially when the passes are one and two. The melting block and the melting lump in the composite plates are easy to become the source of crack. The shear strengths and the bending properties for the 1060Al/Q235 composite plate after M-FSP are the best when the passes are three, with the tool rotation speed of 1200 rpm and the forward speed of 60 mm/min. The optimized interfaces for the composite plate after M-FSP are mainly by the metallurgical bondings, with a certain thickness and discontinuous mechanical connections. Therefore, the crack extension stress is the largest and the mechanical properties are the best.


Sign in / Sign up

Export Citation Format

Share Document