Explicit error modeling of dynamic thermal errors of heavy machine tool frames caused by ambient temperature fluctuations

2019 ◽  
Vol 48 ◽  
pp. 320-338 ◽  
Author(s):  
Fengchun Li ◽  
Tiemin Li ◽  
Yao Jiang ◽  
Haitong Wang ◽  
Kornel F. Ehmann
2017 ◽  
Vol 868 ◽  
pp. 64-68
Author(s):  
Yu Bin Huang ◽  
Wei Sun ◽  
Qing Chao Sun ◽  
Yue Ma ◽  
Hong Fu Wang

Thermal deformations of machine tool are among the most significant error source of machining errors. Most of current thermal error modeling researches is about 3-axies machine tool, highly reliant on collected date, which could not predict thermal errors in design stage. In This paper, in order to estimate the thermal error of a 4-axise horizontal machining center. A thermal error prediction method in machine tool design stage is proposed. Thermal errors in workspace in different working condition are illustrated through numerical simulation and volumetric error model. Verification experiments shows the outcomes of this prediction method are basically correct.


2013 ◽  
Vol 303-306 ◽  
pp. 1782-1785
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo

The purpose of this research is to improve the machining accuracy of a CNC machine tool through thermal error modeling and compensation. In this paper, a thermal error model based on back propagation networks (BPN) is presented, and the compensation is fulfilled. The results show that the BPN model improves the prediction accuracy of thermal errors on the CNC machine tool, and the thermal drift has been reduced from 15 to 5 after compensation.


Author(s):  
Jie Zhu ◽  
Jun Ni ◽  
Albert J. Shih

Thermal errors are among the most significant contributors to machine tool errors. Successful reduction in thermal errors has been realized through thermal error compensation techniques in the past few decades. The effectiveness of thermal error models directly determines the compensation results. Most of the current thermal error modeling methods are empirical and highly rely on the collected data under specific working conditions, neglecting the insight into the underlying mechanisms that result in thermal deformations. In this paper, an innovative temperature sensor placement scheme and thermal error modeling strategy are proposed based on the thermal mode concept. The modeling procedures for both position independent and position dependent thermal errors are illustrated through numerical simulation and experiments. Satisfactory results have been achieved in terms of model accuracy and robustness.


2011 ◽  
Vol 121-126 ◽  
pp. 529-533
Author(s):  
Jian Han ◽  
Li Ping Wang ◽  
Ning Bo Cheng ◽  
Xu Wang

Thermal error in machine tools is one of the most significant causes of machining errors. This paper presents a new modeling method for machine tool error. Minimal-resource allocating networks (M-RAN) are used to establish the relationships between the temperature variables and thermal errors. Pt-100 thermal resistances and eddy current sensors are used to measure the temperature variables and the thermal errors respectively. A machining center is used to experiment. The test results show that method with minimal-resource allocating networks can predict the thermal errors of the machine accurately.


2007 ◽  
Vol 329 ◽  
pp. 779-784 ◽  
Author(s):  
Y.X. Li ◽  
Jian Guo Yang ◽  
Yu Yao Li ◽  
H.T. Zhang ◽  
G. Turyagyenda

Due to the complexity of machine tool thermal errors affected by various factors, a new combining prediction model, based on the theory of gery system GM (1,1) model, is applied to the trend prediction of machine tool thermal errors. The degree of smoothness of primary data sequence is first improved by function transform method and sequentially grey system GM (1,1) model is established; second, time series analysis model is established by remnant sequence of GM (1,1) model to amend the precision of grey system GM (1,1) model. Thus, the precision of combining prediction model is further improved. Through the prediction study on thermal error modeling in a spot NC turning center, testing results showed that combining prediction model can highly improve machine tool’s prediction precision and make it more effective for real-time compensation of machine tool thermal error.


2015 ◽  
Vol 10 ◽  
pp. 120-130 ◽  
Author(s):  
Ronnie R. Fesperman ◽  
Shawn P. Moylan ◽  
Gregory W. Vogl ◽  
M. Alkan Donmez

Author(s):  
Shenggang Guo ◽  
Zhiling Yuan ◽  
Fenghe Wu ◽  
Yongxin Li ◽  
Shaoshuai Wang ◽  
...  

The selection of biomimetic prototypes mostly depends on the subjective observation of a designer. This research uses TRIZ to explore some inferential steps in bionic design of the heavy machine tool column. Conflict resolution theory of TRIZ is applied to describe improved and deteriorated parameters and a contradiction matrix is used to obtain recommended inventive principles. A reference table of solutions corresponding to the biological phenomenon and TRIZ solutions is formed to expedite retrieving the biomimetic object. Based on the table, herbaceous hollow stem is selected to imitate column structure. Four kinds of plant are chosen from the biological database. To select the best from four candidates, a bionic ideality evaluation index is proposed based on similarity analysis and ideality evaluation theory in TRIZ. Thus, the bionic effect can be described and compared quantitatively. Bionic configuration is then evolved concerning manufacturing requirements. Size optimization of stiffener thicknesses is implemented finally, and satisfactory results of the lightweight effect is obtained.


2013 ◽  
Vol 457-458 ◽  
pp. 1562-1565
Author(s):  
Qiang Huang ◽  
Chan Jun Gao

Error modeling and analysis can provide some important direction to the machining precision control. According to the characteristics of topology structure on machine tool, a space error model of machine tool and detailed modeling method are presented in this paper, which are based on three-dimensional vector chain. Taking a lathe as an example, the application method of this model in error sensitivity analysis is introduced. By this model, the relationship between the relative error of workpiece-tool and each source error can be solved by ordinary vector operation, and the analysis efficiency should be enhanced greatly.


2015 ◽  
Vol 23 (6) ◽  
pp. 1587-1597 ◽  
Author(s):  
张恩忠 ZHANG En-zhong ◽  
赵继 ZHAO Ji ◽  
冀世军 JI Shi-jun ◽  
林洁琼 LIN Jie-qiong ◽  
李刚 LI Gang

Sign in / Sign up

Export Citation Format

Share Document