A study of forming of thin-walled hemispheres by mandrel-free spinning of commercially pure aluminum tubes

2021 ◽  
Vol 64 ◽  
pp. 306-322
Author(s):  
Biplov Kumar Roy ◽  
Yannis P. Korkolis ◽  
Yoshio Arai ◽  
Wakako Araki ◽  
Takafumi Iijima ◽  
...  
Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALUMINUM 1100 is commercially pure aluminum and is characterized by its excellent ability to be drawn, spun, stamped or forged. It has good weldability, excellent resistance to corrosion and many home, architectural and industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-44. Producer or source: Various aluminum companies. Originally published October 1956, revised February 1974.


Alloy Digest ◽  
1957 ◽  
Vol 6 (10) ◽  

Abstract KYNAL P10 is a grade of commercially pure aluminum having high corrosion resistance and fabricating qualities. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-57. Producer or source: Imperial Chemical Industries Inc..


2006 ◽  
Vol 15-17 ◽  
pp. 381-386 ◽  
Author(s):  
I.H. Hwang ◽  
Takehiko Watanabe ◽  
Y. Doi

We tried to join steel to Al-Mg alloy using a resistance spot welding method. The effect of Mg in Al-Mg alloy on the strength and the interfacial microstructure of the joint was investigated. Additionally, the effect of insert metal of commercially pure aluminum, which was put into the bonding interface, on the joint strength was examined. The obtained results were as follows. The cross-tensile strength of a joint between SS400 steel and commercially pure aluminum (SS400/Al) was high and fracture occurred in the aluminum base metal. However, the strength of a joint between SS400 and Al-Mg alloy was remarkably low and less than 30% of that of the SS400/Al joint. An intermetallic compound layer developed so thickly at the bonded interface of the SS400/Al-Mg alloy joint that the joint strength decreased. The intermetallic compound layer developed more thickly as Mg content in the Al-Mg alloy increased. Using insert metal of commercially pure aluminum containing little Mg successfully improved the strength of the SS400/Al-Mg alloy joint and the strength was equivalent to that of the base metal.


2011 ◽  
Vol 66-68 ◽  
pp. 1155-1162
Author(s):  
Jian Ning Wei ◽  
Gen Mei Li ◽  
Li Ling Zhou ◽  
Xue Yun Zhou ◽  
Jian Min Yu ◽  
...  

A large number of macroscopic pores were introduced into commercially pure aluminum (Al) and Zn-Al eutectoid alloy by air pressure infiltration process to comparatively study the influence of macroscopic pores on the damping behaviors of the materials. Macroscopic pores size are on the order of a millimetre (0.5~1.4mm) and in large proportions, typically high 76vol.%. The damping behavior of the materials is characterized by internal friction (IF). The IF was measured on a multifunction internal friction apparatus (MFIFA) at frequencies of 0.5, 1.0 and 3.0 Hz over the temperature range of 25 to 400 °C, while continuously changing temperature. The damping capacity of the metal materials is shown to increase with introducing macroscopic pores. Finally, the operative damping mechanisms in the metal materials with macroscopic pores were discussed in light of IF measurements.


1963 ◽  
Vol 85 (4) ◽  
pp. 346-350 ◽  
Author(s):  
H. C. Sortais ◽  
S. Kobayashi ◽  
E. G. Thomsen

In conventional spinning of cones, the cone-wall thickness variation was studied using blanks of 1100-0 commercially pure aluminum sheet of 0.050-in. thickness. The results revealed that the radial stress induced in the unspun flange is the major cause of nonuniform wall thickness of spun cones. The theoretical tangential force component was derived by use of the deformation energy method. Qualitative agreement was found between the theoretical and the experimental values of tangential force component in the underspinning conditions.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 394 ◽  
Author(s):  
Getinet Asrat Mengesha ◽  
Jinn P. Chu ◽  
Bih-Show Lou ◽  
Jyh-Wei Lee

The plasma electrolyte oxidation (PEO) process has been considered an environmentally friendly surface engineering method for improving the corrosion resistance of light weight metals. In this work, the corrosion resistance of commercially pure Al and PEO treated Al substrates were studied. The PEO layers were grown on commercially pure aluminum substrates using two different alkaline electrolytes with different addition concentrations of Si3N4 nanoparticles (0, 0.5 and 1.5 gL−1) and different duty cycles (25%, 50%, and 80%) at a fixed frequency. The corrosion properties of PEO coatings were investigated by the potentiodynamic polarization and electrochemical impedance spectroscopy test in 3.5 wt.% NaCl solutions. It showed that the weight gains, layer thickness and surface roughness of the PEO grown oxide layer increased with increasing concentrations of Si3N4 nanoparticles. The layer thickness, surface roughness, pore size, and porosity of the PEO oxide layer decreased with decreasing duty cycle. The layer thickness and weight gain of PEO coating followed a linear relationship. The PEO layer grown using the Na2B4O7∙10H2O contained electrolyte showed an excellent corrosion resistance and low surface roughness than other PEO coatings with Si3N4 nanoparticle additives. It is noticed that the corrosion performance of PEO coatings were not improved by the addition of Si3N4 nanoparticle in the electrolytic solutions, possibly due to its detrimental effect to the formation of a dense microstructure.


2007 ◽  
Vol 280-283 ◽  
pp. 1453-1458 ◽  
Author(s):  
U. Akin ◽  
Harun Mindivan ◽  
R. Samur ◽  
E.S. Kayali ◽  
H. Çimenoğlu

In this paper the tribological performance of oxide (Cr2O3, ZrO2CaO and Al203) and combined coatings applied on a commercially pure aluminum sheet were presented. Combined coatings were produced by applying Polytetrafluoroethylene (PTFE) film on the oxide coatings. Among the oxide coatings Cr2O3 exhibited the highest and Al2O3 exhibited the lowest wear resistance, in accordance with their hardness. Combined coatings exhibited superior wear resistance than oxide coatings even at heavy wear testing conditions.


Sign in / Sign up

Export Citation Format

Share Document