Formability prediction of advanced high strength steels using constitutive models characterized by uniaxial and biaxial experiments

2013 ◽  
Vol 213 (11) ◽  
pp. 1929-1942 ◽  
Author(s):  
Seoknyeon Kim ◽  
Jinwoo Lee ◽  
Frédéric Barlat ◽  
Myoung-Gyu Lee
2013 ◽  
Vol 773-774 ◽  
pp. 109-114 ◽  
Author(s):  
Sansot Panich ◽  
Frédéric Barlat ◽  
Vitoon Uthaisangsuk ◽  
Surasak Suranuntchai ◽  
Suwat Jirathearanat

Experimental and numerical investigations using Forming Limit Curve (FLC) and Forming Limit Stress Curve (FLSC) were carried out for two Advanced High Strength Steel (AHSS) grades DP780 and TRIP780. The forming limit curves were experimentally determined by means of Nakazima stretching test. Then, both FLC and FLSC were analytically calculated on the basis of the Marciniack-Kuczinsky (M-K) model. The yield criteria Barlat2000 (Yld2000-2d) were employed in combination with the Swift and modified Voce strain hardening laws to describe plastic flow behavior of the AHS steels. Hereby, influence of the constitutive models on the numerically determined FLCs and FLSCs were examined. Obviously, the forming limit curves predicted by the M-K model applying the Yld2000-2d yield criterion and Swift hardening law could fairly represent the experimental limit curves. The FLSCs resulted from the experimental data and theoretical model were also compared.


2016 ◽  
Vol 725 ◽  
pp. 3-14 ◽  
Author(s):  
Frédéric Barlat ◽  
Youngung Jeong ◽  
Jin Jin Ha ◽  
Carlos Tomé ◽  
Myoung Gyu Lee ◽  
...  

A succinct description of advanced constitutive models for applications to forming process simulations is provided. These models are continuum-based because they are more efficient in terms of computation time than microstructure–based models. However, they are so–called advanced because they are considered in many scientific studies but rather scarcely used in industrial applications. In addition, the relationship between these continuum constitutive models and multi-scale approaches based on crystal plasticity, dislocation dynamics and mechanics of multi-phase materials, such as advanced high strength steels, is substantiated.


2021 ◽  
Vol 182 ◽  
pp. 106687
Author(s):  
Yu Xia ◽  
Chu Ding ◽  
Zhanjie Li ◽  
Benjamin W. Schafer ◽  
Hannah B. Blum

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1136
Author(s):  
Marcel Carpio ◽  
Jessica Calvo ◽  
Omar García ◽  
Juan Pablo Pedraza ◽  
José María Cabrera

Designing a new family of advanced high-strength steels (AHSSs) to develop automotive parts that cover early industry needs is the aim of many investigations. One of the candidates in the 3rd family of AHSS are the quenching and partitioning (QP) steels. These steels display an excellent relationship between strength and formability, making them able to fulfill the requirements of safety, while reducing automobile weight to enhance the performance during service. The main attribute of QP steels is the TRIP effect that retained austenite possesses, which allows a significant energy absorption during deformation. The present study is focused on evaluating some process parameters, especially the partitioning temperature, in the microstructures and mechanical properties attained during a QP process. An experimental steel (0.2C-3.5Mn-1.5Si (wt%)) was selected and heated according to the theoretical optimum quenching temperature. For this purpose, heat treatments in a quenching dilatometry and further microstructural and mechanical characterization were carried out by SEM, XRD, EBSD, and hardness and tensile tests, respectively. The samples showed a significant increment in the retained austenite at an increasing partitioning temperature, but with strong penalization on the final ductility due to the large amount of fresh martensite obtained as well.


2004 ◽  
Vol 101 (7-8) ◽  
pp. 551-558 ◽  
Author(s):  
R. Bode ◽  
M. Meurer ◽  
T. W. Schaumann ◽  
W. Warnecke

Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


Sign in / Sign up

Export Citation Format

Share Document