Effects of tool axis offset in turn-milling process

2016 ◽  
Vol 231 ◽  
pp. 239-247 ◽  
Author(s):  
Umut Karaguzel ◽  
Emre Uysal ◽  
Erhan Budak ◽  
Mustafa Bakkal
2020 ◽  
Vol 66 ◽  
pp. 180-187
Author(s):  
Koji Shimanuki ◽  
Akira Hosokawa ◽  
Tomohiro Koyano ◽  
Tatsuaki Furumoto ◽  
Yohei Hashimoto

Author(s):  
Ebrahim Hosseini ◽  
Shafiqur Rehman ◽  
Ashkan Alimoradi

Turn-milling is a hybrid machining process which used benefits of interrupted cutting for proceeding of round bars. However, number of controllable parameters in the hybrid process is numerous that makes optimizing the process complicated. In the present study, an optimization work has been proposed to investigate the trade-off between production rate and cutting force in roughing regime as well surface roughness and tensile residual stress in finishing regime. Number of 43 experiments based on response surface methodology was designed and carried out to gather required data for development of quadratic empirical models. Then, the adequacy and importance of process factors were analyzed using analysis of variances. Finally, desirability function was used to optimize the process in rough and finish machining regimes. The obtained results showed that selection of eccentricity and cutter speed at their maximum working range can effectively enhance the quality characteristics in both the roughing and finishing regimes.


Author(s):  
Reza Madoliat ◽  
Sajad Hayati

This paper primarily deals with suppression of chatter in end-milling process. Improving the damping is one way to achieve higher stability for machining process. For this purpose a damper is proposed that is composed of a core and a multi fingered hollow cylinder which are shrink fitted in each other and their combination is shrink fitted inside an axial hole along the tool axis. This structure causes a resisting friction stress during bending vibration. Using FEA-ANSYS the structure is simulated. Then a parameter study is carried out where the frequency response and the depth of cut are calculated and tabulated to obtain the most effective configuration. The optimal configuration of tool is fabricated and finite element results are validated using modal test. The results show a high improvement in performance of the tool with proposed damper. Good agreement between experiments and modeling is obtained.


2012 ◽  
Vol 184-185 ◽  
pp. 663-667 ◽  
Author(s):  
Lin Hui Zhao ◽  
Jian Cheng Zhang ◽  
Wei Su

In micro machining, turn-milling tool wear is a key factor for part surface quality. This paper carries on experiments on end mills wear in micro turn-milling machining, aiming to research the wear form and provide some reference data for developing wear standard of small diameter end mills. To measure wear condition of end mills, machine vision technique is utilized. This paper designs and sets up an online end mill wear measurement system for a micro turn-milling process center. With a series of experiments on small diameter end mills, wear conditions of different cutting positions are researched. Based on analysis of experiment data, wear characteristics and wear rule for micro turn-milling process are summarized in this paper.


2011 ◽  
Vol 148-149 ◽  
pp. 748-752
Author(s):  
Song Mei Yuan ◽  
C. Zhang ◽  
Y.Z. Huang

This paper introduces simply concept and characteristic of turn-milling technology, including turn-milling machining centers and turn-milling process. Detailed describe present situation of turn-milling technology. Brief introduce several application examples of turn-milling technology. Finally, combined with the latest applications of turn-milling technology, discusses development of turn-milling technology, given the 8 direction.


2019 ◽  
Vol 295 ◽  
pp. 59-65
Author(s):  
Zhong Peng Zheng ◽  
Xin Jin ◽  
Ye Wang Sun ◽  
Xin Yang Jiang ◽  
Zhi Jing Zhang ◽  
...  

In order to improve the cutting stability of high-efficiency micro turn-milling machine tools, avoid the chattering problem during the cutting process. In this paper, the chatter problem in the cutting process is studied based on the stable lobes. By analyzing the high-efficiency turn-milling machine tool mechanism and the turn-milling model, the micro turn-milling dynamic dynamic vibration model and the mathematical model of turn-milling chatter are obtained. Then, based on the hammer test method, the transfer function of the tool-workpiece system is obtained, and the turn-milling stable lobes of the high-efficiency micro turn-milling machine tool is constructed. Finally, the research on the stable zone of the turning main spindle parts, the turning back spindle parts and the high-frequency milling part are completed. The experimental research results guide and optimize the selection of cutting parameters for turn-milling process.


2014 ◽  
Vol 852 ◽  
pp. 419-426
Author(s):  
Yong Wang ◽  
Rong Yan ◽  
Fang Yu Peng ◽  
Feng Qiu

In orthogonal turn-milling process, both of the workpiece and the cutter rotate at the same time, which causes cutting depth and cutting thickness to change instantaneously. In this paper, a new 2D stability model of orthogonal turn-milling is established, in which the effect of variable cutting depth and cutting thickness is considered. The stability lobe diagrams are obtained by using Full-discretization Method. By analyzing the stability of orthogonal turn-milling, it is found that it is better than that of ordinary milling in same machining conditions. It means that in orthogonal turn-milling process deep cutting depth can be chosen and high machining efficiency can be obtained compared to that in ordinary milling process.


Author(s):  
Saeid Amini ◽  
Mohammad Baraheni ◽  
Mohammad Khaki

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.


2014 ◽  
Vol 887-888 ◽  
pp. 1184-1190 ◽  
Author(s):  
Yi Zhi Liu ◽  
Fang Yu Peng ◽  
Sen Lin ◽  
Rong Yan ◽  
Sheng Yang

Workpiece temperature in orthogonal turn-milling compound machining was studied with experimental method in this paper. The orthogonal turn-milling process was simulated through engagement of a milling tool and cylindrical surface on a five-axis milling center. The cutting parameters were designed into an orthogonal parameter table of seven factors three levels based on factors having effects on workpiece temperature. Variance analysis of data achieved from this experiment was carried out and conclusion about the order of effects each factor has on workpiece temperature was drawn.


Sign in / Sign up

Export Citation Format

Share Document