Effects of microstructure on the deformation behavior, mechanical properties and residual stress of cold-rolled HAl77-2 aluminum brass tube

2016 ◽  
Vol 235 ◽  
pp. 75-84 ◽  
Author(s):  
Yongda Mo ◽  
Yanbin Jiang ◽  
Xinhua Liu ◽  
Jianxin Xie
Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 110
Author(s):  
Sung Jin Park ◽  
Seong-Hyeon Jo ◽  
Jung Gi Kim ◽  
Juntae Kim ◽  
Ryul Lee ◽  
...  

Invar alloy possesses a uniquely low coefficient of thermal expansion, making it an ideal material for fine metal masks. To manufacture fine metal masks, Invar alloys are often cold-rolled, during which residual stress develops. Heat treatment is an effective means to control residual stress that develops within Invar sheets after cold rolling, but the treatment should be carried out with care. In this article, a comprehensive study on the effect of heat treatment on the residual stress, microstructure, and mechanical properties of a cold-rolled Invar sheet is reported. We show that while both recovery and recrystallization are effective means of reducing residual stress, substantial microstructural changes and, therefore, notable changes in mechanical properties and residual stress, occur after recrystallization. Moreover, residual stress release due to recrystallization can be affected by microstructure and texture prior to heat treatment as these factors play a significant role in recrystallization.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


2019 ◽  
Vol 61 (1) ◽  
pp. 56-60 ◽  
Author(s):  
Fazil Husem ◽  
Fatma Meydaneri Tezel ◽  
Muhammet Emre Turan

Alloy Digest ◽  
1974 ◽  
Vol 23 (5) ◽  

Abstract WC-3015 is a columbium-base alloy developed for structural applications in high-temperature oxidizing environments. It is characterized by good oxidation resistance, good mechanical properties and compatibility with silicide coatings. Cold-rolled sheet can be joined and welded without cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-21. Producer or source: Wah Chang, a Teledyne Corporation.


2009 ◽  
Vol 113 (2) ◽  
pp. 976-983 ◽  
Author(s):  
Wonbong Jang ◽  
Jongchul Seo ◽  
Choonkeun Lee ◽  
Sang-Hyon Paek ◽  
Haksoo Han

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


Sign in / Sign up

Export Citation Format

Share Document