Influence of pulsed arc on the metal droplet deposited by projected transfer mode in wire-arc additive manufacturing

2018 ◽  
Vol 259 ◽  
pp. 353-360 ◽  
Author(s):  
Yi Luo ◽  
Jinglong Li ◽  
Jie Xu ◽  
Liang Zhu ◽  
Jingtao Han ◽  
...  
2018 ◽  
Vol 99 (5-8) ◽  
pp. 1521-1530 ◽  
Author(s):  
Zhu Liang ◽  
Li Jinglong ◽  
Luo Yi ◽  
Han Jingtao ◽  
Zhang Chengyang ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1245
Author(s):  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Eider Aldalur ◽  
Trunal Bhujangrao

The symmetrical nature in the case of wall fabrication by wire arc additive manufacturing (WAAM) has been observed in the literature, but it has not been studied as a source of knowledge. This paper focuses on the comparative study of three drop transfer methods employing Gas Metal Arc Welding (GMAW) technology, one of the most reported for the manufacture of aluminum alloys. The transfer modes studied are the well-known pulsed GMAW, cold arc, and the newer pulsed AC. The novelty of the last transfer mode is the reversal of the polarity during the preparation phase of the substance for droplet deposition. This study compares the symmetry of zero beads to determine the best parameters and transfer modes for wire arc additive manufacturing of 5 series aluminum. The pulsed transfer modes show values of 0.6 for symmetry ratio, which makes them more interesting strategies than cold arc with a symmetry ratio of 0.5. Furthermore, the methodology proposed in this study can be extrapolated to other materials manufactured with this technology.


2021 ◽  
Vol 11 (10) ◽  
pp. 4694
Author(s):  
Christian Wacker ◽  
Markus Köhler ◽  
Martin David ◽  
Franziska Aschersleben ◽  
Felix Gabriel ◽  
...  

Wire arc additive manufacturing (WAAM) is a direct energy deposition (DED) process with high deposition rates, but deformation and distortion can occur due to the high energy input and resulting strains. Despite great efforts, the prediction of distortion and resulting geometry in additive manufacturing processes using WAAM remains challenging. In this work, an artificial neural network (ANN) is established to predict welding distortion and geometric accuracy for multilayer WAAM structures. For demonstration purposes, the ANN creation process is presented on a smaller scale for multilayer beads on plate welds on a thin substrate sheet. Multiple concepts for the creation of ANNs and the handling of outliers are developed, implemented, and compared. Good results have been achieved by applying an enhanced ANN using deformation and geometry from the previously deposited layer. With further adaptions to this method, a prediction of additive welded structures, geometries, and shapes in defined segments is conceivable, which would enable a multitude of applications for ANNs in the WAAM-Process, especially for applications closer to industrial use cases. It would be feasible to use them as preparatory measures for multi-segmented structures as well as an application during the welding process to continuously adapt parameters for a higher resulting component quality.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Sign in / Sign up

Export Citation Format

Share Document