scholarly journals Advanced composite material: Effect of composite SiC on compressive strength and hardness of porous titanium

Author(s):  
Jialong Kang ◽  
Yaoran Cui ◽  
Jingjing Song ◽  
Hongxia Mao ◽  
Guibao Qiu ◽  
...  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kailin Zhou

The need to reduce the overall weight of aeronautical and space structures while preserving or even improving their performances make the research and development in the field of advanced composite materials necessary for the advancement of aerospace technologies. This paper provides an overview of composite materials and their fiber reinforcement technology in aerospace field. We discuss the reasons for aircraft manufacturers and airlines to use composites and illustrate the definition of composite material. Then, we list the advantages and disadvantage of composite materials and cite different fiber reinforcement technologies of carbon fibers, aramid fiber, UHMWPE, etc. At last, we summarize the present and future applications of composites materials in aerospace and other civil fields. A conclusion is drawn that in the future, composite materials are set for their development, while continually decreasing its costs is still an important task.


2015 ◽  
Vol 240 ◽  
pp. 168-173
Author(s):  
Grzegorz Milewski ◽  
Tomasz Majewski

Polymerization shrinkage of composite filling materials still becomes one of the most important features which decreases strength properties of reconstructed teeth crowns. From among various methods to reduce that disadvantageous phenomenon which are used in a dental practice sandwich filling processing of crown cavity seems to be the most effective one. The paper presents the results of the strength examination of the influence of the different ways of layered polymerization processing on the mechanical properties of modern hybrid micro composite material with regards to the following quantities: compressive strength, strain to fracture, modulus of elasticity and work to fracture.


2014 ◽  
Vol 556-562 ◽  
pp. 3056-3059
Author(s):  
Chao Sun ◽  
En Sheng Dong ◽  
Yong Heng Li ◽  
Bing Zhu

The application of advanced composite materials in airplane is becoming more and more. Along with the increase of its service time, it may be abnormal. It needs to take an anomaly detection. The electrical impedance spectroscopy (EIS) is applied to the anomaly detection of composite material components in airplane. A uniplanar sensor with double-electrode and two carbon fiber composite samples are made, an experiment circuit is designed. In order to verify the effectiveness of the experimental circuit, the EIS of the Randles unit model circuit is measured, as well as the two composite material samples using the dual-electrode measurement method. The picture of EIS is drawn in Matlab and comparison and analysis are carried out. The preliminary experimental results indicate that the anomalies can be seen by measuring the EIS of the composite materials. It is feasible for the EIS to be applied in the anomaly detection of the composite materials in airplane.


2005 ◽  
Vol 109 (1095) ◽  
pp. 233-246 ◽  
Author(s):  
S-Y. Oh ◽  
L. Librescu ◽  
O. Song

Abstract The modelling and vibration of composite thin-walled pre-twisted rotating blades of non-uniform cross-sections along their span, and featuring the extension-twist elastic coupling are addressed. To this end, Hamilton’s principle is used to derive the equations of motion and the associated boundary conditions. In addition to the pretwist and warping restraint, the exotic properties of advanced composite material are used, and the efficiency of implementing the tailoring technique toward the enhancement, without weight penalties, of the vibratory behaviour of rotating blades is illustrated. Comparisons between the predictions by both Wagner’s and Washizu’s approaches are presented, and pertinent conclusions regarding the implications of the various geometrical and physical characteristics of the blade are outlined.


1976 ◽  
Author(s):  
M. H. Chopin

The preparation for and conduct of the first flight by the U. S. Air Force of a turbine engine fan stage fabricated of advanced composite materials is discussed. Composite material properties and basic design philosophy is presented along with preliminary flight evaluation results. This is the first application of filamentary-reinforced metal matrix composites to a turbine engine structural component.


Soft Matter ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1389-1403 ◽  
Author(s):  
Mete Bakir ◽  
Jacob L. Meyer ◽  
Siyuan Pang ◽  
James Economy ◽  
Iwona Jasiuk

Crosslinked aromatic copolyester nanocomposites demonstrate multifunctional macroscale properties, introducing superior performance elements to polymer nanocomposite applications towards designing advanced composite material.


Sign in / Sign up

Export Citation Format

Share Document