scholarly journals Advanced Composite Fan Blade Flight Evaluation Program

1976 ◽  
Author(s):  
M. H. Chopin

The preparation for and conduct of the first flight by the U. S. Air Force of a turbine engine fan stage fabricated of advanced composite materials is discussed. Composite material properties and basic design philosophy is presented along with preliminary flight evaluation results. This is the first application of filamentary-reinforced metal matrix composites to a turbine engine structural component.

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Tang Zhijin

In recent years, a variety of composite materials preparation technology has been updated, from ceramic matrixcomposites, metal matrix composites to polymer matrix composites, a variety of preparation techniques have beengreatly improved, making the composite properties and applications signifi cantly improved. This paper reviews severalimportant preparation methods and applications of ceramic matrix composites, metal matrix composites and polymermatrix composites.


Author(s):  
J. A. Alexander ◽  
E. G. Parks ◽  
P. Melnyk

Metal matrix composites constitute an attractive class of materials which must be considered as serious candidates for application in advanced gas turbine engines. Materials development programs have been successful in fabricating and characterizing metallic composite materials. Demonstration programs have shown that aerospace structural components can be fabricated from them. This paper deals with the application of the diffusion bonding process to the formation of a complex shape such as a gas turbine engine fan blade from titanium or aluminum matrix composites. It deals with the route to volume producibility rather than with the documentation of progress to date.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kailin Zhou

The need to reduce the overall weight of aeronautical and space structures while preserving or even improving their performances make the research and development in the field of advanced composite materials necessary for the advancement of aerospace technologies. This paper provides an overview of composite materials and their fiber reinforcement technology in aerospace field. We discuss the reasons for aircraft manufacturers and airlines to use composites and illustrate the definition of composite material. Then, we list the advantages and disadvantage of composite materials and cite different fiber reinforcement technologies of carbon fibers, aramid fiber, UHMWPE, etc. At last, we summarize the present and future applications of composites materials in aerospace and other civil fields. A conclusion is drawn that in the future, composite materials are set for their development, while continually decreasing its costs is still an important task.


2014 ◽  
Vol 556-562 ◽  
pp. 3056-3059
Author(s):  
Chao Sun ◽  
En Sheng Dong ◽  
Yong Heng Li ◽  
Bing Zhu

The application of advanced composite materials in airplane is becoming more and more. Along with the increase of its service time, it may be abnormal. It needs to take an anomaly detection. The electrical impedance spectroscopy (EIS) is applied to the anomaly detection of composite material components in airplane. A uniplanar sensor with double-electrode and two carbon fiber composite samples are made, an experiment circuit is designed. In order to verify the effectiveness of the experimental circuit, the EIS of the Randles unit model circuit is measured, as well as the two composite material samples using the dual-electrode measurement method. The picture of EIS is drawn in Matlab and comparison and analysis are carried out. The preliminary experimental results indicate that the anomalies can be seen by measuring the EIS of the composite materials. It is feasible for the EIS to be applied in the anomaly detection of the composite materials in airplane.


2013 ◽  
Vol 9 (5) ◽  
pp. 12-17 ◽  
Author(s):  
А. Ивашов ◽  
A. Ivashov ◽  
Ю. Мандра ◽  
J. Mandra

The  purpose of research is to study the dependence of the strength properties of filling materials filtek ultimate, filtek  ultimate and Gradia under uniaxial compression of the polymerization temperature in comparison with dentin. The polymerization is increase in strength nanocluster composite filtek ultimate with increasing temperature. The dexterity material properties improved with increasing temperature.


This paper discusses about the weight reduction in the wing structure that improves the productivity and performance of an aircraft wing. Decrease in the mass of the wings has higher significance compared all other air craft parts Aircraft wing structures are analyzed with LM25 and a metal matrix composite material which is a mix of LM25 and Silicon Carbide (SiC) where in aluminum is the base metal and silicon carbide is added in different weight proportions. By varying silicon carbide percentage in LM25 four types of samples are prepared utilizing stir casting process. The young's modulus, Poisson's ratio and thickness of every sample are determined cautiously by exposing the sample to tensile test and hardness test. By looking at the material properties acquired tentatively ideal level of silicon carbide in aluminum is found. Static basic investigation is completed in ANSYS by contributing the properties of the ideal example which are acquired tentatively. The outcomes acquired from ANSYS for pure AL25 and metal matrix composite (SiC) are compared. By looking at the outcomes it is discovered that composite material has preferred material properties and stresses over LM25.


Author(s):  
Raghu Raja Pandiyan Kuppusamy

Quality products with low cost manufacturing routes are the major objectives for the product development in any application. The current statement is evident for polymer-matrix composites, particularly in high end applications such as aerospace and mass transit structures. These applications require advanced composite materials tailored to meet the property demands posted by dynamic load conditions, and hence, the use of wide spectrum of constituents and architectures are vital to cater the needs. Consequently, the development of novel composite materials with the permutations of ingredients leads to the innovative processing techniques. To address the gap in the manufacturing with economical processing routes of thick sectioned advanced composite parts showing superior properties at different wall sections, an innovative composite manufacturing technology coupling resin transfer moulding (RTM) processing and vacuum applications, namely vacuum enhanced resin transfer moulding technology (VERTMTy), is conceptualized, proposed, and developed.


2011 ◽  
Vol 678 ◽  
pp. 95-104
Author(s):  
Riccardo Donnini ◽  
Loredana Santo ◽  
Vincenzo Tagliaferri

The aim of this paper is to investigate the behaviour in terms of drilling forces and roughness of Metal Matrix Composites (MMC) in hot drilling machining. In particular, Al2009/(SiC)w, Al6061/(SiC)w, and Al6061(Al2O3)p metal matrix composites were used, and the adopted temperature were in the range 20°C-160°C. A comparison with drilling at room temperature has been discussed. The results have shown the sensible influence of the working temperature on drilling forces and on surface material properties. In the case of Al2009/(SiC)w a minimum in the drilling forces has been found, making possible the dry machining and improving the cutting conditions. Instead, for Al6061/(SiC)W and Al6061(Al2O3)p in the used temperature range no minimum appears.


Sign in / Sign up

Export Citation Format

Share Document