scholarly journals Correlation of heterogeneous interface microstructure and mechanical performance of inertia friction welded 6061 Al alloy joint

Author(s):  
Hong Ma ◽  
Guoliang Qin ◽  
Qian Zhao ◽  
Peihao Geng
Author(s):  
T. Arunkumar ◽  
Velmurugan Pavanan ◽  
Vijay Anand Murugesan ◽  
V. Mohanavel ◽  
Karthikeyan Ramachandran

Abstract This study emphasis on a novel fabrication technique to fabricate hybrid cermets using Al 6061 alloy with nano sized SiC, Al2O3 and TiO2 as reinforcements. During the fabrication process, the melted pool was ultrasonicated to disperse nanoparticles at 20 kHz for 5 min and pressure of 50 MPa was applied to eliminate voids. The influence of nanoparticles on physical, thermal and mechanical properties were evaluated by tensile, wear and thermal studies. Cermets with Al2O3 reinforcements showed higher mechanical performance compared to Al alloy. This enhancement could be related to the uniform distribution of Al2O3 with refinement in grain size of Al alloy which was observed via surface analysis. The morphological studies provided justifiable evidence of homogeneous distribution, nominal cluster along with agglomeration and cavities shrinking on the cermets. The agglomeration of nanoparticles along with SiC protected the cermet in corrosion and abrasive wear by ~ 97% and ~ 71%. The study evidenced the novel fabrication method using ultrasonic rheo-squeeze casting led to improvement in mechanical and thermal properties of the hybrid cermets. Graphical abstract


2019 ◽  
Vol 342 ◽  
pp. 275-287 ◽  
Author(s):  
Pradeep Singh ◽  
Amit Abhash ◽  
B.N. Yadav ◽  
M. Shafeeq ◽  
I.B. Singh ◽  
...  

Author(s):  
Pankaj K Gupta ◽  
MK Gupta

The present work aims to enhance the mechanical performance of monolithic Al alloy and single reinforced metal matrix composite using a hybridization technique. The microparticles of alumina and boron carbide were reinforced into cast Al alloy (6061) in a systematic varying ratio (i.e.100/0, 75/25, 50/50, 25/75 and 0/100) to prepare the hybrid metal matrix composites via stir casting method. The mechanical properties (i.e. tensile, impact, hardness and flexural) of the prepared composites were investigated as per ASTM standards. Furthermore, microstructural analysis of unfractured and fractured composite samples was also carried out using Scanning Electron Microscope. It was observed that hybrid composites comprising of microparticles revealed an enhanced tensile, flexural and hardness properties, and reduced impact energy and porosity as compared to Al alloy and single reinforced metal matrix composites. The highest values of tensile strength and modulus were offered by a hybrid composite (B50A50), which was 40% and 52.12% higher than that of Al alloy. Furthermore, there was an improvement of 105.72% in flexural strength and a reduction of 23.88% in impact energy for composite B50A50 than that of Al alloy. The present developed hybrid metal matrix composites can be proposed to be used in automobile parts and construction applications.


2005 ◽  
Vol 410-411 ◽  
pp. 472-475 ◽  
Author(s):  
L.J. Chen ◽  
C.Y. Ma ◽  
G.M. Stoica ◽  
P.K. Liaw ◽  
C. Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document