scholarly journals Improvement on biosafety and bioactivity of Ti-6Al-4V alloys by construction the three-dimensional grid structure though electrochemical dealloying

Author(s):  
Lan Wang ◽  
Yunhao Xu ◽  
Sen Yu ◽  
Tian Bai ◽  
Wenhao Zhou ◽  
...  
2001 ◽  
Vol 02 (03) ◽  
pp. 317-329 ◽  
Author(s):  
MUSTAFA MAT DERIS ◽  
ALI MAMAT ◽  
PUA CHAI SENG ◽  
MOHD YAZID SAMAN

This article addresses the performance of data replication protocol in terms of data availability and communication costs. Specifically, we present a new protocol called Three Dimensional Grid Structure (TDGS) protocol, to manage data replication in distributed system. The protocol provides high availability for read and write operations with limited fault-tolerance at low communication cost. With TDGS protocol, a read operation is limited to two data copies, while a write operation is required with minimal number of copies. In comparison to other protocols. TDGS requires lower communication cost for an operation, while providing higher data availability.


2018 ◽  
Vol 146 (5) ◽  
pp. 1601-1617 ◽  
Author(s):  
Shan Sun ◽  
Rainer Bleck ◽  
Stanley G. Benjamin ◽  
Benjamin W. Green ◽  
Georg A. Grell

Abstract The atmospheric hydrostatic Flow-Following Icosahedral Model (FIM), developed for medium-range weather prediction, provides a unique three-dimensional grid structure—a quasi-uniform icosahedral horizontal grid and an adaptive quasi-Lagrangian vertical coordinate. To extend the FIM framework to subseasonal time scales, an icosahedral-grid rendition of the Hybrid Coordinate Ocean Model (iHYCOM) was developed and coupled to FIM. By sharing a common horizontal mesh, air–sea fluxes between the two models are conserved locally and globally. Both models use similar adaptive hybrid vertical coordinates. Another unique aspect of the coupled model (referred to as FIM–iHYCOM) is the use of the Grell–Freitas scale-aware convective scheme in the atmosphere. A multiyear retrospective study is necessary to demonstrate the potential usefulness and allow for immediate bias correction of a subseasonal prediction model. In these two articles, results are shown based on a 16-yr period of hindcasts from FIM–iHYCOM, which has been providing real-time forecasts out to a lead time of 4 weeks for NOAA’s Subseasonal Experiment (SubX) starting July 2017. Part I provides an overview of FIM–iHYCOM and compares its systematic errors at subseasonal time scales to those of NOAA’s operational Climate Forecast System version 2 (CFSv2). Part II uses bias-corrected hindcasts to assess both deterministic and probabilistic subseasonal skill of FIM–iHYCOM. FIM–iHYCOM has smaller biases than CFSv2 for some fields (including precipitation) and comparable biases for other fields (including sea surface temperature). FIM–iHYCOM also has less drift in bias between weeks 1 and 4 than CFSv2. The unique grid structure and physics suite of FIM–iHYCOM is expected to add diversity to multimodel ensemble forecasts at subseasonal time scales in SubX.


2006 ◽  
Vol 62 (4) ◽  
pp. o1424-o1425
Author(s):  
Ru-Mei Cheng ◽  
Yi-Zhi Li ◽  
Sheng-Ju Ou ◽  
Xue-Tai Chen

In the crystal structure of the title compound, C16H13N5O2·CH4O, there are intra- and intermolecular hydrogen bonds. Molecules form dimers, which are extended to afford a ribbon structure. These ribbons are further packed, forming a three-dimensional grid structure.


2017 ◽  
Vol 31 (25) ◽  
pp. 1750225 ◽  
Author(s):  
Xiaoqin Zhou ◽  
Jun Wang ◽  
Rongqi Wang ◽  
Jieqiong Lin

The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam–spring–mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.


2011 ◽  
Vol 14 (4) ◽  
pp. 213-216 ◽  
Author(s):  
Jiwei Zheng ◽  
Shichao Zhang ◽  
Wenbo Liu ◽  
Yalan Xing ◽  
Zhijia Du

Nanoporous copper (NPC) ribbons with an average pore size of 5~500nm were fabricated by chemical/electrochemical dealloying of Mn55Cu45 alloy. The influence of different kinds of driving forces on Cu atoms surface diffusivity (Ds), which determines the pore sizes of the resultant NPC, was also systematically investigated. The Ds by chemical dealloying with and without surfactants is about 1.08×10-20 m2 s-1 and 1.79×10-18 m2 s-1, through which NPC with pore size of ~5nm and ~50nm was produced, while, in electrochemical dealloying with 0 V SCE potential, Ds and pore size increase to 1.16×10-15 m2 s-1 and ~500nm respectively. The three dimensional NPC ribbons with the largest pore size (500nm) was chosen as the current collectors to fabricate three dimensional tin thin-film anodes (3D-TTA) with homogeneous tin layers on the ligaments by electroless plating for lithium-ion batteries (LIBs). The 3D-TTA exhibits first discharge capacity of 790 mAh g-1, 45% capacity retention after 10 cycles, indicating a promising application in LIBs.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Sign in / Sign up

Export Citation Format

Share Document