Microstructural features of biomedical cobalt–chromium–molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment

2020 ◽  
Vol 45 ◽  
pp. 146-156 ◽  
Author(s):  
Haoqing Li ◽  
Ming Wang ◽  
Dianjun Lou ◽  
Weilong Xia ◽  
Xiaoying Fang
Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Felix Clemens Ewald ◽  
Florian Brenne ◽  
Tobias Gustmann ◽  
Malte Vollmer ◽  
Philipp Krooß ◽  
...  

In order to overcome constraints related to crack formation during additive processing (laser powder bed fusion, L-BPF) of Fe-Mn-Al-Ni, the potential of high-temperature L-PBF processing was investigated in the present study. The effect of the process parameters on crack formation, grain structure, and phase distribution in the as-built condition, as well as in the course of cyclic heat treatment was examined by microstructural analysis. Optimized processing parameters were applied to fabricate cylindrical samples featuring a crack-free and columnar grained microstructure. In the course of cyclic heat treatment, abnormal grain growth (AGG) sets in, eventually promoting the evolution of a bamboo like microstructure. Testing under tensile load revealed a well-defined stress plateau and reversible strains of up to 4%.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 266
Author(s):  
Wakshum M. Tucho ◽  
Vidar Hansen

The widely adopted temperature for solid solution heat treatment (ST) for the conventionally fabricated Inconel 718 is 1100 °C for a hold time of 1 h or less. This ST scheme is, however, not enough to dissolve Laves and annihilate dislocations completely in samples fabricated with Laser metal powder bed fusion (L-PBF) additive manufacturing (AM)-Inconel 718. Despite this, the highest hardness obtained after aging for ST temperatures (970–1250 °C) is at 1100 °C/1 as we have ascertained in our previous studies. The unreleased residual stresses in the retained lattice defects potentially affect other properties of the material. Hence, this work aims to investigate if a longer hold time of ST at 1100 °C will lead to complete recrystallization while maintaining the hardness after aging or not. For this study, L-PBF-Inconel 718 samples were ST at 1100 °C at various hold times (1, 3, 6, 9, 16, or 24 h) and aged to study the effects on microstructure and hardness. In addition, a sample was directly aged to study the effects of bypassing ST. The samples (ST and aged) gain hardness by 43–49%. The high density of annealing twins evolved during 3 h of ST and only slightly varies for longer ST.


2020 ◽  
Author(s):  
Zhiguo Yuan ◽  
Wei Zhang ◽  
Xiangchao Meng ◽  
Jue Zhang ◽  
Teng TengLong ◽  
...  

Abstract Objective: This study aimed to quantitatively investigate the peri-implant histology of applying defect-size polyether ether ketone (PEEK) implant for the treatment of localized osteochondral defects in the femoral head and compared it with cobalt chromium molybdenum (CoCrMo) alloy implant.Methods: A femoral head osteochondral defect model was created in the left hips of goats (n=12). Defects were randomly treated by immediate placement of a PEEK (n=6) or CoCrMo implant (n=6). The un-operated right hip joints served as a control. Goats were sacrificed at 12 weeks. Periprosthetic cartilage quality was semi-quantitatively analyzed macroscopically and microscopically. Implant osseointegration was measured by micro-CT and histomorphometry.Results: The modified macroscopic articular evaluation score in the PEEK group was lower than that in the CoCrMo group (p<0.05), and the histological score of the periprosthetic and acetabular cartilage in the PEEK group was lower than that in the CoCrMo group (P<0.05). The mean bone-implant contact for PEEK implants was comparable with that for CoCrMo alloy implants at 12 weeks.Conclusions: A PEEK implant for the treatment of local osteochondral defect in the femoral head demonstrated effective fixation and superior in vivo cartilage protection compared with an identical CoCrMo alloy implant.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1067 ◽  
Author(s):  
Florian Huber ◽  
Thomas Papke ◽  
Christian Scheitler ◽  
Lukas Hanrieder ◽  
Marion Merklein ◽  
...  

The aim of this work is to investigate the β-Ti-phase-stabilizing effect of vanadium and iron added to Ti-6Al-4V powder by means of heterogeneous powder mixtures and in situ alloy-formation during laser powder bed fusion (L-PBF). The resulting microstructure was analyzed by metallographic methods, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The mechanical properties were characterized by compression tests, both prior to and after heat-treating. Energy dispersive X-ray spectroscopy showed a homogeneous element distribution, proving the feasibility of in situ alloying by LPBF. Due to the β-phase-stabilizing effect of V and Fe added to Ti-6Al-4V, instead of an α’-martensitic microstructure, an α/β-microstructure containing at least 63.8% β-phase develops. Depending on the post L-PBF heat-treatment, either an increased upsetting at failure (33.9%) compared to unmodified Ti-6Al-4V (28.8%), or an exceptional high compressive yield strength (1857 ± 35 MPa compared to 1100 MPa) were measured. The hardness of the in situ alloyed material ranges from 336 ± 7 HV0.5, in as-built condition, to 543 ± 13 HV0.5 after precipitation-hardening. Hence, the range of achievable mechanical properties in dependence of the post-L-PBF heat-treatment can be significantly expanded in comparison to unmodified Ti-6Al-4V, thus providing increased flexibility for additive manufacturing of titanium parts.


Sign in / Sign up

Export Citation Format

Share Document