Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles

Author(s):  
Z.H. Wang ◽  
B. Niu ◽  
Q. Wang ◽  
C. Dong ◽  
J.C. Jie ◽  
...  
2012 ◽  
Vol 61 (4) ◽  
pp. 371-376 ◽  
Author(s):  
Kyohei NOMURA ◽  
Keiji KUBUSHIRO ◽  
Yohei SAKAKIBARA ◽  
Satoshi TAKAHASHI ◽  
Hiroki YOSHIZAWA

2008 ◽  
Vol 1125 ◽  
Author(s):  
Terumitsu Miura ◽  
Katsuhiko Fujii ◽  
Koji Fukuya

ABSTRACTThe interaction between dislocation sliding and damage structure in ion-irradiated austenitic stainless steels was investigated. Solution annealed type 316 and 304 stainless steels (316SS and 304SS) were irradiated with 2.8 MeV Fe2+ ions at 300 °C up to 10 dpa and tensiled to 2% plastic strain at 300 °C. Dislocations moving from unirradiated matrix were prevented due to the interactions with the damage structures consisted of dislocation loops and voids in the damage region. The prevention of dislocation movements by the damage structures became strong in 304SS compared in 316SS; probably due to lower stacking fault energy in 304SS. The prevention of dislocation movements was weak for Fe ion-irradiated specimens in which the increase in shear strength calculated from the size and number density of the defects was small compared to He ion-irradiated specimens.


Author(s):  
Jun-Min Seo ◽  
Sang-Seop Jeong ◽  
Yun-Jae Kim ◽  
Jin Weon Kim ◽  
Chang-Young Oh ◽  
...  

Abstract In this study, tensile tests of 304 and 316 austenitic stainless steels at various strain rate were performed to investigate the strain rate effect on tensile properties. It is shown that the strain rate effect on stress depends not only on the strain rate but also on the plastic strain level. Accordingly, a modification of the existing Johnson-Cook model is proposed to incorporate the interacting effect of plastic strain and strain rate for 304 and 316 austenitic stainless steels. Although improvement is not significant, the proposed modified Johnson-Cook model can reduce the difference from the experimental data at various strain levels, compared to the existing Johnson-Cook model.


2011 ◽  
Vol 702-703 ◽  
pp. 850-853
Author(s):  
David Marechal ◽  
Loic Malet ◽  
Stéphane Godet ◽  
Chad W. Sinclair

There has recently been significant interest in the problem of variant selection in the strain-induced transformation of austenite to α’-martensite in metastable austenitic stainless steels. Previous work has highlighted our poor understanding of the mechanisms leading to this transformation, in particular the role that the macroscopic stress plays in the transformation. In this work, we have sought to perform detailed experiments aimed at developing a statistical grain level view of variant selection in one particular grade of austenitic stainless steel. EBSD measurements made over a large number of grains as well as macroscopic texture measurements made at different levels of imposed plastic strain allow for comparison against various approaches for predicting variant selection based on the Patel-Cohen interaction energy.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Sign in / Sign up

Export Citation Format

Share Document