Detection and quantification of pre-existing plastic strain in austenitic stainless steels by potentiostatic etching method

2018 ◽  
Vol 2018 (0) ◽  
pp. OS1213
Author(s):  
Taiki NISHIMURA ◽  
Hiroshi ABE ◽  
Yutaka WATANABE
2012 ◽  
Vol 61 (4) ◽  
pp. 371-376 ◽  
Author(s):  
Kyohei NOMURA ◽  
Keiji KUBUSHIRO ◽  
Yohei SAKAKIBARA ◽  
Satoshi TAKAHASHI ◽  
Hiroki YOSHIZAWA

2008 ◽  
Vol 1125 ◽  
Author(s):  
Terumitsu Miura ◽  
Katsuhiko Fujii ◽  
Koji Fukuya

ABSTRACTThe interaction between dislocation sliding and damage structure in ion-irradiated austenitic stainless steels was investigated. Solution annealed type 316 and 304 stainless steels (316SS and 304SS) were irradiated with 2.8 MeV Fe2+ ions at 300 °C up to 10 dpa and tensiled to 2% plastic strain at 300 °C. Dislocations moving from unirradiated matrix were prevented due to the interactions with the damage structures consisted of dislocation loops and voids in the damage region. The prevention of dislocation movements by the damage structures became strong in 304SS compared in 316SS; probably due to lower stacking fault energy in 304SS. The prevention of dislocation movements was weak for Fe ion-irradiated specimens in which the increase in shear strength calculated from the size and number density of the defects was small compared to He ion-irradiated specimens.


Author(s):  
Jun-Min Seo ◽  
Sang-Seop Jeong ◽  
Yun-Jae Kim ◽  
Jin Weon Kim ◽  
Chang-Young Oh ◽  
...  

Abstract In this study, tensile tests of 304 and 316 austenitic stainless steels at various strain rate were performed to investigate the strain rate effect on tensile properties. It is shown that the strain rate effect on stress depends not only on the strain rate but also on the plastic strain level. Accordingly, a modification of the existing Johnson-Cook model is proposed to incorporate the interacting effect of plastic strain and strain rate for 304 and 316 austenitic stainless steels. Although improvement is not significant, the proposed modified Johnson-Cook model can reduce the difference from the experimental data at various strain levels, compared to the existing Johnson-Cook model.


2011 ◽  
Vol 702-703 ◽  
pp. 850-853
Author(s):  
David Marechal ◽  
Loic Malet ◽  
Stéphane Godet ◽  
Chad W. Sinclair

There has recently been significant interest in the problem of variant selection in the strain-induced transformation of austenite to α’-martensite in metastable austenitic stainless steels. Previous work has highlighted our poor understanding of the mechanisms leading to this transformation, in particular the role that the macroscopic stress plays in the transformation. In this work, we have sought to perform detailed experiments aimed at developing a statistical grain level view of variant selection in one particular grade of austenitic stainless steel. EBSD measurements made over a large number of grains as well as macroscopic texture measurements made at different levels of imposed plastic strain allow for comparison against various approaches for predicting variant selection based on the Patel-Cohen interaction energy.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


2015 ◽  
Vol 57 (7-8) ◽  
pp. 597-601 ◽  
Author(s):  
Peeraya Pipatnukun ◽  
Panyawat Wangyao ◽  
Gobboon Lothongkum

Alloy Digest ◽  
2011 ◽  
Vol 60 (1) ◽  

Abstract EPRI P87 is a MMA electrode designed for dissimilation joints between austenitic stainless steels (i.e. 304H) and a creep resisting CrMo alloy (i.e. P91). This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on joining. Filing Code: Ni-685. Producer or source: Metrode Products Ltd.


Sign in / Sign up

Export Citation Format

Share Document