Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing

Author(s):  
Young-Kyun Kim ◽  
Kee-Ahn Lee
2020 ◽  
Vol 58 (11) ◽  
pp. 759-767
Author(s):  
Young-Kyun Kim ◽  
Kee-Ahn Lee

In this study, high-strength pure Cu bulk material was manufactured using a cold spray additive manufacturing process, and its microstructure, tensile and compressive deformation behaviors were investigated and compared. The cold spray additive manufactured Cu bulk material showed a heterogeneous grain structure consisting of fine-grains and coarse-grains, and only α – Cu single phase was identified. The cold spray Cu exhibited yield strengths of ~415 MPa in tensile- and compression tests, indicating that it had similar mechanical properties in different deformation modes. The yield strength values were similar to that of Cu manufactured by equal channel angular pressing (ECAP), a severe plastic deformation (SPD) method which enables ultra-high strength. Concerning tensile characteristics, the cold sprayed Cu exhibited partial plastic deformation that has not been reported to date. In addition, some nano-sized dimples, suggesting metallurgical bonding, were also found in the fracture surface. Regarding compression characteristics, the strain softening phenomenon, which is not a general tendency in room temperature deformation, appeared. This unique softening behavior was attributed to dynamic recovery and dynamic recrystallization during compression testing. Based on the above results, we discuss the tensile/compressive deformation behavior of the cold spray Cu bulk material, and predict compressive deformation behavior considering the constitutive equation.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 740
Author(s):  
Qi Jiang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
Haichuan Shi ◽  
Di Wu ◽  
...  

With the development of the aerospace and automotive industries, high heat exchange efficiency is a challenge facing the development of various industries. Pure copper has excellent mechanical and physical properties, especially high thermal conductivity and electrical conductivity. These excellent properties make pure copper the material of choice for the manufacture of heat exchangers and other electrical components. However, the traditional processing method is difficult to achieve the production of pure copper complex parts, so the production of pure copper parts through additive manufacturing has become a problem that must be overcome in industrial development. In this article, we not only reviewed the current status of research on the structural design and preparation of complex pure copper parts by researchers using selective laser melting (SLM), selective electron beam melting (SEBM) and binder jetting (BJ) in recent years, but also reviewed the forming, physical properties and mechanical aspects of pure copper parts prepared by different additive manufacturing methods. Finally, the development trend of additive manufacturing of pure copper parts is also prospected.


2021 ◽  
Vol 67 ◽  
pp. 521-534
Author(s):  
Daniele Vanerio ◽  
Jan Kondas ◽  
Mario Guagliano ◽  
Sara Bagherifard

2014 ◽  
Vol 30 (6) ◽  
pp. 443-450 ◽  
Author(s):  
S. Yin ◽  
X. Suo ◽  
H. Liao ◽  
Z. Guo ◽  
X. Wang

Author(s):  
Hagen Kohl ◽  
Lisa Schade ◽  
Gabor Matthäus ◽  
Tobias Ullsperger ◽  
Burak Yürekli ◽  
...  

Author(s):  
Wanfei Ren ◽  
Jinkai Xu ◽  
Zhongxu Lian ◽  
Xiaoqing Sun ◽  
Zheming Xu ◽  
...  

Abstract The fabrication of pure copper microstructures with submicron resolution has found a host of applications such as 5G communications and highly sensitive detection. The tiny and complex features of these structures can enhance device performance during high-frequency operation. However, the easy manufacturing of microstructures is still a challenge. In this paper, we present localized electrochemical deposition micro additive manufacturing (LECD-μAM), combining localized electrochemical deposition (LECD) and closed-loop control of atomic force servo technology, which can print helical springs and hollow tubes very effectively. We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and the closed-loop control of an atomic force servo. The printing state of the micro-helical springs could be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe (AFP) cantilever. The results showed that it took 361 s to print a helical spring with a wire length of 320.11 μm at a deposition rate of 0.887 μm/s, which could be changed on the fly by simply tuning the extrusion pressure and the applied voltage. Moreover, the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring. The shear modulus of the helical spring material was about 60.8 GPa, much higher than that of bulk copper (~44.2 GPa). Additionally, the microscopic morphology and chemical composition of the spring were characterized. These results delineated a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.


Author(s):  
Philippe Dupuis ◽  
Yannick Cormier ◽  
Marianne Fenech ◽  
Antoine Corbeil ◽  
Bertrand Jodoin

Sign in / Sign up

Export Citation Format

Share Document