scholarly journals Tensile and Compressive Deformation Behaviors of High-Strength Cu Bulk Material Manufactured by Cold Spray

2020 ◽  
Vol 58 (11) ◽  
pp. 759-767
Author(s):  
Young-Kyun Kim ◽  
Kee-Ahn Lee

In this study, high-strength pure Cu bulk material was manufactured using a cold spray additive manufacturing process, and its microstructure, tensile and compressive deformation behaviors were investigated and compared. The cold spray additive manufactured Cu bulk material showed a heterogeneous grain structure consisting of fine-grains and coarse-grains, and only α – Cu single phase was identified. The cold spray Cu exhibited yield strengths of ~415 MPa in tensile- and compression tests, indicating that it had similar mechanical properties in different deformation modes. The yield strength values were similar to that of Cu manufactured by equal channel angular pressing (ECAP), a severe plastic deformation (SPD) method which enables ultra-high strength. Concerning tensile characteristics, the cold sprayed Cu exhibited partial plastic deformation that has not been reported to date. In addition, some nano-sized dimples, suggesting metallurgical bonding, were also found in the fracture surface. Regarding compression characteristics, the strain softening phenomenon, which is not a general tendency in room temperature deformation, appeared. This unique softening behavior was attributed to dynamic recovery and dynamic recrystallization during compression testing. Based on the above results, we discuss the tensile/compressive deformation behavior of the cold spray Cu bulk material, and predict compressive deformation behavior considering the constitutive equation.

2017 ◽  
Vol 26 (7) ◽  
pp. 1498-1508 ◽  
Author(s):  
Young-Kyun Kim ◽  
Kyu-Sik Kim ◽  
Hyung-Jun Kim ◽  
Chan-Hee Park ◽  
Kee-Ahn Lee

2005 ◽  
Vol 475-479 ◽  
pp. 393-396 ◽  
Author(s):  
Dong Suk Lee ◽  
Gyu-Sam Shim ◽  
Mok Soon Kim ◽  
Won Yong Kim ◽  
Hiroshi Yamagata

Compressive deformation behavior of pre-sintered Al-10Si-5Fe-1Cu-0.5Mg-1Zr (wt%) alloy containing 15% of porosity was investigated in the temperature range from 753 K to 793 K and at strain rates from 10-4 to 100 s-1. From the microstructural observation, it was revealed that the occurrence of grain boundary sliding accomodated by dynamic recrystallization during the compressive deformation was closely associated with the considerable decrease in the porosity of the pre-sintered alloy. In the specimens deformed at 793 K with 10-4~100 s-1 and at 773 K with 10- 4~10-2 s-1, we have found an evidence of the occurrence of a liquid phase during compressive deformation in the microstructure. The liquid phase was considered to promote particle boundary sliding and hinder the reduction of the pore.


Author(s):  
Lorena Perez ◽  
Jake Colburn ◽  
Luke N. Brewer ◽  
Michael Renfro ◽  
Tim McKechnie

Abstract In this work; Inconel 718 gas-atomized powder was successfully heat treated over the range of 700-900°C. As-atomized and as-heat treated powders were cold sprayed with both nitrogen and helium gasses. Cold spray of high strength materials is still challenging due to their resistance to particle deformation affecting the resulting deposit properties. Powder heat treatment to modify its deformation behavior has recently been developed for aluminum alloy powders; however; there is no literature reported for Inconel 718 powders. The microstructural evolution of the powder induced by the heat treatment was studied and correlated with their deformation behavior during the cold spray deposition. Deposits sprayed with heat-treated powders at 800 and 900 °C and nitrogen showed less particle deformation and higher porosity as compare to as-atomized deposit associated to the presence of delta phase in the powders precipitated by the heat treatment. In contrast; deposits sprayed with helium using both powder conditions; as-atomized and as heat-treated powders; showed high particle deformation and low porosity indicating that the type of gas has a greater effect on the particle deformation than the delta phase precipitated in the heat-treated powders. These results contribute to understanding the role of powder microstructure evolution induced by heat treatment on the cold spray deposits properties.


Sign in / Sign up

Export Citation Format

Share Document