Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow

Author(s):  
Cunxiu Zhang ◽  
Xiaolong Lu ◽  
Cong Wang ◽  
Xudong Sui ◽  
Yanfang Wang ◽  
...  
Keyword(s):  
Coatings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Young Seok Kim ◽  
Hae Jin Park ◽  
Ki Seong Lim ◽  
Sung Hwan Hong ◽  
Ki Buem Kim

In the present study, novel AlCoCrNi high entropy nitride (HEN) films were deposited on Si substrate by a reactive direct current magnetron sputtering system. In order to investigate the influence of sputtering parameters on the microstructure and mechanical properties of the film, nitrogen flow ratio (RN: 25–100%) and process pressure (1.33 × 10−1–1.33 Pa) were controlled, respectively. All the films were identified as an amorphous phase with composition of near equiatomic ratios, regardless of the conditions of nitrogen flow ratios and process pressures. However, the limited mechanical properties were found for the films deposited under different nitrogen flow ratios with retaining the process pressure of 1.33 Pa. To enhance the mechanical properties of the AlCoCrNi HEN film, process pressure was adjusted. From the transmission electron microscopy (TEM) observation, the structure of the film deposited at the process pressure of 1.33 Pa is identified as a porous and open structure with a number of density-deficient boundary and nano-scale voids. On the other hand, densified morphology of the film was observed at pressure of 1.33 × 10−1 Pa. As a result, the hardness, elastic modulus, and H/E were improved up to 16.8, 243 GPa, and 0.0692, respectively.


Author(s):  
A. De Veirman ◽  
J. Van Landuyt ◽  
K.J. Reeson ◽  
R. Gwilliam ◽  
C. Jeynes ◽  
...  

In analogy to the formation of SIMOX (Separation by IMplanted OXygen) material which is presently the most promising silicon-on-insulator technology, high-dose ion implantation of cobalt in silicon is used to synthesise buried CoSi2 layers. So far, for high-dose ion implantation of Co in Si, only formation of CoSi2 is reported. In this paper it will be shown that CoSi inclusions occur when the stoichiometric Co concentration is exceeded at the peak of the Co distribution. 350 keV Co+ ions are implanted into (001) Si wafers to doses of 2, 4 and 7×l017 per cm2. During the implantation the wafer is kept at ≈ 550°C, using beam heating. The subsequent annealing treatment was performed in a conventional nitrogen flow furnace at 1000°C for 5 to 30 minutes (FA) or in a dual graphite strip annealer where isochronal 5s anneals at temperatures between 800°C and 1200°C (RTA) were performed. The implanted samples have been studied by means of Rutherford Backscattering Spectroscopy (RBS) and cross-section Transmission Electron Microscopy (XTEM).


2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


2021 ◽  
Author(s):  
Arthur Dogariu ◽  
Laura E. Dogariu ◽  
Michael S. Smith ◽  
Brianne McManamen ◽  
John F. Lafferty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document