Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy

Author(s):  
Mingxu Wu ◽  
Shubin Wang ◽  
Fei Xiao ◽  
Guoliang Zhu ◽  
Chao Yang ◽  
...  
2020 ◽  
Author(s):  
Erik Rybacki ◽  
Lu Niu ◽  
Brian Evans

<p>Abundant observations of field- and micro-structures in marble rocks in both natural and laboratory settings indicate that these rocks have deformed by various combinations of mechanical twinning, dislocation motion, and dilatant fracturing. To better constrain the systematics of this semi-brittle flow, we performed a set of about 80 experiments at eight different temperatures (20°C<T<800°C). At each T, deformation conditions included different confining pressures (50 < P<sub>C </sub><300 MPa) and strain rates (10<sup>-6</sup> < ε’ <10<sup>-4 </sup>s<sup>-1</sup>). Under almost all these conditions, both the strength (σ) and the hardening coefficient (Θ=∂σ/∂ε) are affected by changes in P<sub>C</sub> and ε’, but the functional relationships of σ(P<sub>C</sub>, ε’) and Θ(P<sub>C</sub>, ε’) are unique. For example, at 20°C, σ is a non-linear function of both P<sub>C</sub> and ε’, while Θ depends on P<sub>C</sub> alone. In contrast, at 600°C, the dependence of σ on P<sub>C</sub> is very weak, and Θ depends on ε’ alone.</p><p>At T<650°C (less than half the absolute melting point of calcite), and P<sub>C</sub> greater than 50 MPa, the hardening coefficients are substantial (1% or more of the shear modulus), similar to steels and hexagonal metals that deform in a regime called twinning induced plasticity (TWIP). During TWIP, deformation proceeds with “easy” mechanical twinning, combined with dislocation glide on several slip systems whose glide planes are at high angles to the twin plane. In the calcite rocks, depending on conditions, the hardening resulting from twinning may be reduced by dilation and failure owing to brittle processes (at low pressures and temperatures), or by recovery and recrystallization (at higher temperatures or slower strain rates). Thus, both microstructural observations and mechanical deformation data are consistent with the interpretation that the hardening coefficient and strength are determined by the relative partitioning of inelastic strain amongst mechanical twinning, dislocation mechanisms, and dilatant fracturing. One important aspect is the nature of the mechanism that accommodates of discontinuous inelastic strain at the termination of twins at grain boundaries.</p>


2020 ◽  
Vol 321 ◽  
pp. 11069
Author(s):  
Guanfang Chen ◽  
Jinyong Zhang ◽  
Yangyang Fu ◽  
Zheng Chen ◽  
Fan Sun ◽  
...  

By suppressing SIM (stress induced martensitic) phase transformations, a strong and ductile beta TWIP (twinning induced plasticity) Ti-Mo based alloy was achieved, thanking to the coexistence of mechanical twinning ({112}<111> mode and {332} <113> mode) and dislocation glide. The alloy displayed extra high yielding stress, stable strain-hardening rate and adequate ductility. In-situ traction/EBSD technique and TEM characterizations were employed to investigate the plastic deformation mechanism. The dislocation slipping was mediated by bimodal twinning mechanism, composed by high density nano-scale {112} twinning in micro {332} twinning grid. The study aims to exploit novel design strategy for strengthening ductile TWIP Ti alloys, attributed to multimodal twinning effects.


2002 ◽  
Vol 753 ◽  
Author(s):  
Huiping Xu ◽  
Jörg Wiezorek

ABSTRACTThe defect structures in polytwinned (PT) FePd have been studied after room temperature deformation by transmission electron microscopy (TEM). Interactions between gliding dislocations and mechanical twins with the {101}-conjugated PT-interfaces have been identified. Based on crystallographic analyses of shear transfer of dislocations and microtwins across the PT-interfaces in FePd boundary reactions have been identified that are consisted with the TEM observations. A model has been proposed, which is suitable to rationalize significant contributions to strain-hardening from these defect-interface interactions in PT-FePd.


2014 ◽  
Vol 783-786 ◽  
pp. 568-573 ◽  
Author(s):  
A. Roth ◽  
K.E.K. Amouzou ◽  
M.A. Lebyodkin ◽  
T. Richeton ◽  
T.A. Lebedkina ◽  
...  

The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.


1997 ◽  
Vol 12 (3) ◽  
pp. 697-705 ◽  
Author(s):  
Yifan Zhang ◽  
William W. Gerberich ◽  
David A. Shores

The atomic force microscope (AFM) has been used to observe and characterize for the first time surface steps and grooves on the faces of Cr2O3 grains formed as an oxide scale on Ni−30Cr and Ni−30Cr−0.5Y alloys during high temperature oxidation. The very high spatial resolution of the AFM is required to characterize these features. We propose that these surface features, whose dimensions are in the range of nanometers and tens of nanometers, may be interpreted as evidence of highly localized plastic deformation of the oxide scale. The size and spacing of the steps and grooves are consistent with models of plastic deformation based on slip bands derived from dislocation climb or dislocation glide. Mechanical twinning and the models for stress-driven surface instability are also possibly responsible for some surface features. The addition of yttrium to the alloy seemed to enable enhanced plastic deformation of the scale. The strain corresponding to the observed features, estimated by simple models, could relax a significant part of oxide growth and thermal stresses.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


1987 ◽  
Vol 48 (C1) ◽  
pp. C1-175-C1-181
Author(s):  
S. AHMAD ◽  
M. OHTOMO ◽  
R. W. WHITWORTH

Sign in / Sign up

Export Citation Format

Share Document