Plastic deformation of oxide scales at elevated temperatures

1997 ◽  
Vol 12 (3) ◽  
pp. 697-705 ◽  
Author(s):  
Yifan Zhang ◽  
William W. Gerberich ◽  
David A. Shores

The atomic force microscope (AFM) has been used to observe and characterize for the first time surface steps and grooves on the faces of Cr2O3 grains formed as an oxide scale on Ni−30Cr and Ni−30Cr−0.5Y alloys during high temperature oxidation. The very high spatial resolution of the AFM is required to characterize these features. We propose that these surface features, whose dimensions are in the range of nanometers and tens of nanometers, may be interpreted as evidence of highly localized plastic deformation of the oxide scale. The size and spacing of the steps and grooves are consistent with models of plastic deformation based on slip bands derived from dislocation climb or dislocation glide. Mechanical twinning and the models for stress-driven surface instability are also possibly responsible for some surface features. The addition of yttrium to the alloy seemed to enable enhanced plastic deformation of the scale. The strain corresponding to the observed features, estimated by simple models, could relax a significant part of oxide growth and thermal stresses.

Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3764
Author(s):  
Krzysztof Aniołek ◽  
Adrian Barylski ◽  
Marian Kupka

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600–750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.


Author(s):  
A. M. G. Luz ◽  
D. Balint ◽  
K. Nikbin

Progress in aero-engines and land-based gas turbines is continuously linked with a rise of the operating temperature. TBCs are multilayered structures which function together to effectively lower the temperature of its load-bearing superalloy substrate while simultaneously providing oxidation protection against high temperature combustion environments during operation. They typically comprise of a ceramic top coat for thermal insulation and a metallic bond coat that provides oxidation/corrosion resistance and enhances the adhesion of the YSZ to the superalloy substrate. Due to high-temperature oxidation of the bond coat, a thermally grown oxide (TGO) scale of continuous Al2O3 is formed between the ceramic top coat and the bond coat. The formation and growth of the TGO increases the mismatch of thermal expansion coefficients among the multilayered TBC and induce high thermal stresses leading to spallation of the YSZ coat from the underlying metal. Hence, nondestructive diagnostic tools that could reliably probe the subsurface damage state of TBCs are essential to take full advantage of these systems. In this contribution, a new concept of multiscale NDT system is presented. The instrument uses a combination of imaging-based methods with photoluminescence piezospectroscopy, a laser-based method. Imaging-based methods like mid-infrared reflectance, laser optical backscatter and infrared tomography were used to predict the overall lifetime of the coated component. When TBCs approach the end of life, micro-crack nucleation and propagation at the top coat/bond coat interface increases the amount of reflected light. This rise in reflectance was correlated with the lifetime of the component using a neural network that merges the mean and standard deviation value of the gray level. Photoluminescence piezospectroscopy was subsequently used to give information about the structural integrity of the hot spots identified in the image analysis. This laser-based technique measures in-situ the residual stress in the TGO at room temperature. Damage leads to a relaxation of the local stress which is in turn reflected in the luminescence spectrum shape. However, presently there is no agreement on the best spectral parameters that should be used as a measure of the damage accumulation in the coatings. Therefore, the evolution of luminescence spectrum from as-manufactured to critically damaged TBCs was determined using the finite element method. This approach helped to identify the most suitable spectral parameters for damage detection, improving the reliability of photoluminescence piezospectroscopy as a failure assessment tool for TBCs.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Hailong Wang ◽  
Shengping Shen

Using the location-dependent growth strain, a chemomechanical model is developed for the analysis of the stress evolution and distribution in the viscoplastic oxide scale during high-temperature oxidation. The problem of oxidizing a semi-infinite substrate is formulated and solved. The numerical results reveal high compressive stress and significant stress gradient. The maximum stress is at the oxide/substrate interface and the minimum stress at the oxygen/oxide interface in short oxidation time, while the maximum stress is no longer at the oxide/substrate interface in long oxidation time. The stress evolutions at different locations are also presented. The predicted results agree well with the experimental data.


2018 ◽  
Vol 28 (1) ◽  
pp. 463-474 ◽  
Author(s):  
Amir Motallebzadeh ◽  
Shaikh Asad Ali Dilawary ◽  
Erdem Atar ◽  
Huseyin Cimenoglu

2008 ◽  
Vol 595-598 ◽  
pp. 1127-1134 ◽  
Author(s):  
Frédéric Riffard ◽  
Henri Buscail ◽  
F. Rabaste ◽  
Eric Caudron ◽  
Régis Cueff ◽  
...  

Chromia-forming steels are excellent candidates to resist to high temperature oxidizing atmospheres because they form protective oxide scales. The oxide scale growth mechanisms are studied by exposing AISI 304 stainless steel to high temperature conditions in air, and the analyses were carried out by means of thermogravimetry and in situ X-rays diffraction. The in situ XRD analyses carried out during high temperature AISI 304 steel oxidation in air reveals the accelerated growth of iron-containing oxides such as hematite Fe2O3 and iron-chromite FeCr2O4, when the initial germination of the oxide layer contains the presence of a manganese-containing spinel compound (1000°C). When the initial growth shows the only chromia formation (800°C), hematite formation appears differed in time. Protection against corrosion is thus increased when the initial germination of manganese-containing spinel oxide is inhibited in the oxide scale.


Sign in / Sign up

Export Citation Format

Share Document