Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions

2014 ◽  
Vol 783-786 ◽  
pp. 568-573 ◽  
Author(s):  
A. Roth ◽  
K.E.K. Amouzou ◽  
M.A. Lebyodkin ◽  
T. Richeton ◽  
T.A. Lebedkina ◽  
...  

The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Hadi Torkamani ◽  
Shahram Raygan ◽  
Carlos Garcia Mateo ◽  
Yahya Palizdar ◽  
Jafar Rassizadehghani ◽  
...  

AbstractIn this study, dual-phase (DP, ferrite + martensite) microstructures were obtained by performing intercritical heat treatments (IHT) at 750 and 800 °C followed by quenching. Decreasing the IHT temperature from 800 to 750 °C leads to: (i) a decrease in the volume fraction of austenite (martensite after quenching) from 0.68 to 0.36; (ii) ~ 100 °C decrease in martensite start temperature (Ms), mainly due to the higher carbon content of austenite and its smaller grains at 750 °C; (iii) a reduction in the block size of martensite from 1.9 to 1.2 μm as measured by EBSD. Having a higher carbon content and a finer block size, the localized microhardness of martensite islands increases from 380 HV (800 °C) to 504 HV (750 °C). Moreover, despite the different volume fractions of martensite obtained in DP microstructures, the hardness of the steels remained unchanged by changing the IHT temperature (~ 234 to 238 HV). Applying lower IHT temperature (lower fraction of martensite), the impact energy even decreased from 12 to 9 J due to the brittleness of the martensite phase. The results of the tensile tests indicate that by increasing the IHT temperature, the yield and ultimate tensile strengths of the DP steel increase from 493 to 770 MPa, and from 908 to 1080 MPa, respectively, while the total elongation decreases from 9.8 to 4.5%. In contrast to the normalized sample, formation of martensite in the DP steels could eliminate the yield point phenomenon in the tensile curves, as it generates free dislocations in adjacent ferrite.


Nukleonika ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 29-33
Author(s):  
Mariusz Hasiak

Abstract The microstructure and magnetic properties of nanocomposite hard magnetic Nd-Fe-B-(Re, Ti) materials with different Nd and Fe contents are studied. The role of Re and Ti addition in phase composition and volume fraction of the Nd-Fe-B phase is determined. All samples are annealed at the same temperature of 993 K for 10 min. Mössbauer spectroscopy shows that the addition of 4 at.% of Re to the Nd8Fe78B14 alloy leads to creation of an ineligible amount of the magnetically hard Nd2Fe14B phase. Moreover, the microstructure and magnetic characteristics recorded in a wide range of temperatures for the Nd8Fe79−xB13Mx (x = 4; M = Re or Ti) alloys are also analyzed.


1998 ◽  
Vol 39 (8) ◽  
pp. 1023-1029 ◽  
Author(s):  
Birgit Skrotzki ◽  
Mahinur Ünal ◽  
Gunther Eggeler

2015 ◽  
Vol 08 (05) ◽  
pp. 1550049 ◽  
Author(s):  
Vitaly Yu. Topolov ◽  
Christopher R. Bowen ◽  
Paolo Bisegna ◽  
Anatoly E. Panich

The influence of the aspect ratio and volume fraction of ferroelectric ceramic inclusions in a 0–3 matrix on the hydrostatic parameters of a three-component 1–3-type composite is studied to demonstrate the important role of the elastic properties of the two-component matrix on the composite performance. Differences in the elastic properties of the 0–3 matrix and single-crystal rods lead to a considerable dependence of the hydrostatic response of the composite on the anisotropy of the matrix elastic properties. The performance of a 1–0–3 0.92 Pb ( Zn 1/3 Nb 2/3) O 3–0.08 PbTiO 3 SC/modified PbTiO 3 ceramic/polyurethane composite suggests that this composite system is of interest for hydroacoustic applications due to its high hydrostatic piezoelectric coefficients [Formula: see text] and [Formula: see text], squared figure of merit [Formula: see text], and electromechanical coupling factor [Formula: see text].


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Matías Bordone ◽  
Juan Perez-Ipiña ◽  
Raúl Bolmaro ◽  
Alfredo Artigas ◽  
Alberto Monsalve

This article is focused on the mechanical behavior and its relationship with the microstructural changes observed in two high-manganese steels presenting twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP), namely Steel B and Steel C, respectively. Chemical compositions were similar in manganese, but carbon content of Steel B approximately doubles Steel C, which directly impacted on the stacking fault energy (SFE), microstructure and mechanical response of each alloy. Characterization of as-cast condition by optical microscope revealed a fully austenitic microstructure in Steel B and a mixed microstructure in Steel C consisting of austenite grains and thermal-induced (εt) martensite platelets. Same phases were observed after the thermo-mechanical treatment and tensile tests, corroborated by means of X-Ray Diffraction (XRD), which confirms no phase transformation in Steel B and TRIP effect in Steel C, due to the strain-induced γFCC→εHCP transformation that results in an increase in the ε-martensite volume fraction. Higher values of ultimate tensile strength, yield stress, ductility and impact toughness were obtained for Steel B. Significant microstructural changes were revealed in tensile specimens as a consequence of the operating hardening mechanisms. Scanning Electron Microscopy (SEM) observations on the tensile and impact test specimens showed differences in fracture micro-mechanisms.


Author(s):  
Kris Noel Dahl ◽  
Elizabeth A. Booth-Gauthier ◽  
Alexandre J. S. Ribeiro ◽  
Zhixia Zhong

Mechanical force is found to be increasingly important during development and for proper homeostatic maintenance of cells and tissues. The nucleus occupies a large volume fraction of the cell and is interconnected with the cytoskeleton. Here, to determine the direct role of the nucleus itself in converting forces to changes in gene expression, also known as, mechanotransduction, we examine changes in nuclear mechanics and gene reorganization associated with cell fate and with extracellular force. We measure mechanics of nuclei in many model cell systems using micropipette aspiration to show changes in nuclear mechanics. In intact cells we characterize the rheological changes induced in the genome organization with live cell imaging and particle tracking, and we suggest how these changes relate to gene expression.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1019 ◽  
Author(s):  
Angella ◽  
Donnini ◽  
Ripamonti ◽  
Górny ◽  
Zanardi

Tensile testing on ductile iron GJS 400 with different microstructures produced through four different cooling rates was performed in order to investigate the relevance of the microstructure’s parameters on its plastic behaviour. Tensile flow curve modelling was carried out with the Follansbee and Estrin-Kocks-Mecking approach that allowed for an explicit correlation between plastic behaviour and some microstructure parameters. In the model, the ferritic grain size and volume fraction of pearlite and ferrite gathered in the first part of this investigation were used as inputs, while other parameters, like nodule count and interlamellar spacing in pearlite, were neglected. The model matched very well with the experimental flow curves at high strains, while some mismatch was found only at small strains, which was ascribed to the decohesion between the graphite nodules and the ferritic matrix that occurred just after yielding. It can be concluded that the plastic behaviour of GJS 400 depends mainly on the ferritic grain size and pearlitic volume fraction, and other microstructure parameters can be neglected, primarily because of their high nodularity and few defects.


2008 ◽  
Vol 8 (2) ◽  
pp. 722-727 ◽  
Author(s):  
Tae-hyun Nam ◽  
Cheol-am Yu ◽  
Jung-min Nam ◽  
Hyun-gon Kim ◽  
Yeon-wook Kim

Microstructures and deformation behaviour of Ti-45Ni-5Cu and Ti-46Ni-5Cu alloy ribbons prepared by melt spinning were investigated by transmission electron microscopy, thermal cycling tests under constant load and tensile tests. Spherical Ti2Ni particles coherent with the B2 parent phase were observed in the alloy ribbons when the melt spinning temperature was higher than 1773 K. Average size of Ti2Ni particles in the ribbons obtained at 1873 K was 8 nm, which was smaller than that (10 nm) in the ribbons obtained at 1773 K. Volume fraction of Ti2Ni phase in the ribbons obtained at 1873 K was 40%, which was larger than that (20%) in the ribbons obtained at 1773 K. The stress required at temperatures of Af + 10 K for the stress-induced martensitic transformation increased from 93 MPa to 229 MPa and apparent elastic modulus of the B2 parent phase increased from 56 GPa to 250 GPa with increasing the melt spinning temperature from 1673 K to 1873 K in Ti-45Ni-5Cu alloy ribbons. The critical stress for slip deformation of the ribbons increased by coherent Ti2Ni particles, and thus residual elongation did not occur even at 160 MPa, while considerable plastic deformation occurred at 60 MPa in the ribbons without Ti2Ni particles. Almost perfect superelastic recovery was found in the ribbons with coherent Ti2Ni particles, while only partial superelastic recovery was observed in the ribbons without coherent Ti2Ni particles.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


Sign in / Sign up

Export Citation Format

Share Document