Modeling and experimental study on CO2 adsorption in fixed-bed columns: Applications to carbon capture and utilization

Author(s):  
Ram R. Ratnakar ◽  
Shankar Santhosh ◽  
Ravi Agrawal ◽  
Birol Dindoruk
2019 ◽  
Vol 17 (1) ◽  
pp. 9-13
Author(s):  
А. Zhumagaliyeva ◽  
V. Gargiulo ◽  
F. Raganat ◽  
Ye. Doszhanov ◽  
M. Alfe

Carbon capture and sequestration contains a group of technologies keeping thedifferentiation of CO2 from large industrial and energy related sources, transport toa storage location and long-term isolation from the atmosphere. Previous studiesof CO2 adsorption on low-cost iron metal oxide surfaces strongly encourage thepossible use of metal oxide as sorbents, but the tendency of magnetite particles toagglomerate causes a lowering of CO2 sorption capacity. This work investigates theadsorption behavior of CO2 on composite materials prepared coating a low-costcarbonized rice husk (cRH), commercial carbon black (CB) with magnetite fineparticles. The CO2 capture capacity of composites and based on rice husk materialswas evaluated the basis of the breakthrough times measured at atmosphericpressure and room temperature in a lab-scale fixed bed micro-reactor. To thisaim the reactor has been firstly operated for CO2 adsorption data with obtainedsamples.


Author(s):  
Muhammad Ashraf Sabri ◽  
Samar Al Jitan ◽  
Daniel Bahamon ◽  
Lourdes F. Vega ◽  
Giovanni Palmisano

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shofu Matsuda ◽  
Yuuki Niitsuma ◽  
Yuta Yoshida ◽  
Minoru Umeda

AbstractGenerating electric power using CO2 as a reactant is challenging because the electroreduction of CO2 usually requires a large overpotential. Herein, we report the design and development of a polymer electrolyte fuel cell driven by feeding H2 and CO2 to the anode (Pt/C) and cathode (Pt0.8Ru0.2/C), respectively, based on their theoretical electrode potentials. Pt–Ru/C is a promising electrocatalysts for CO2 reduction at a low overpotential; consequently, CH4 is continuously produced through CO2 reduction with an enhanced faradaic efficiency (18.2%) and without an overpotential (at 0.20 V vs. RHE) was achieved when dilute CO2 is fed at a cell temperature of 40 °C. Significantly, the cell generated electric power (0.14 mW cm−2) while simultaneously yielding CH4 at 86.3 μmol g−1 h−1. These results show that a H2-CO2 fuel cell is a promising technology for promoting the carbon capture and utilization (CCU) strategy.


Author(s):  
Francisco M. Baena-Moreno ◽  
Mónica Rodríguez-Galán ◽  
Fernando Vega ◽  
Bernabé Alonso-Fariñas ◽  
Luis F. Vilches Arenas ◽  
...  

2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Nabilah Zaini ◽  
Khairul Sozana Nor Kamarudin

Emission of carbon dioxide (CO2) becomes a major concern in combating issues of global warming. The strategy to reduce the concentration of CO2 could be achieved by executing carbon capture and storage (CCS) technology such as adsorption. This study presents the used of kenaf as a green source for CO2 adsorption material. The modification of MEA on kenaf is a novelty work to enhance the capacity of adsorbent since MEA has been proved to have potential in separating CO2 in industrial applications. In this work, 10 wt % of MEA has been impregnated on kenaf via wet impregnation method. The adsorption of CO2 study was conducted by passing CO2/N2 mixture in a ratio of 30:70 in a Pressure Swing Adsorption (PSA) system with a pressure up to 1.5 bar at ambient temperature. Result obtained via SEM analysis shows that the morphology of kenaf was affected after modification with MEA. However, the presence of MEA on kenaf has improved the CO2 adsorption capacity by 16 %. In addition, the adsorption equilibrium data for kenaf and MEA modified kenaf are well fitted in Freundlich isotherm model at low pressure and well fitted in Langmuir model at higher pressure. This study indicates that the introduction of MEA on kenaf could enhance the CO2 adsorption process.  


CFD Letters ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1-10
Author(s):  
Mohd Zul Amzar Zulkifli ◽  
Azfarizal Mukhtar ◽  
Muhammad Faizulizwan Mohamad Fadli ◽  
Anis Muneerah Shaiful Bahari ◽  
Akihiko Matsumoto ◽  
...  

The annual increase in energy demand has led to an increase in greenhouse gas emissions, in particular CO2 emissions from the power generation industry. Carbon Capture and Utilization are technologies applied to capture CO2 gases and transform the gases into a different energy source. The adsorption technology to capture CO2 gases was chosen due to the minimum energy consumption and low costs required for an industrial application for sustainability. Metal-Organic Framework (MOF) has a reasonably high CO2 adsorption capability. It has been applied as an adsorbent for capturing and storing CO2. In this study, a comparison of CFD simulation with experimental CO2 and methane adsorption values in solid adsorbent beds containing MOF-5 at various temperatures was presented. The simulation was performed using 2D and 3D models from 0℃ at STP to 130℃ for CO2 and methane gas molecules. In addition, the isothermal and kinetic adsorption model was added to the simulations. This includes Single- and Dual-Site Langmuir adsorption isotherm and Linear Driving Force. The porous media model was then activated to imitate packed bed adsorbent and measured the pressure drop from the simulation. The results showed that the CO2 adsorption values of MOF-5 decrease as the adsorbent temperature increases. There was a decline of 0.002 mmol/g of adsorbed CO2 molecules per 10-kelvin difference. The CO2 adsorption value was 0.53 mmol/g at STP and 1.15 mmol/g for CH4 at STP. Both CO2 and CH4 adsorption were used to suggest optimal CO2 adsorption for the Pressure Swing Adsorption cycle.


1986 ◽  
Vol 16 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Colin Oloman ◽  
John Radcliffe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document