The role of tropomyosin receptor kinase type B in modulation of neuropathic pain in diabetic polyneuropathy

2021 ◽  
Vol 429 ◽  
pp. 118620
Author(s):  
Tamara Filimonova ◽  
Yulia Karakulova
2013 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Noar Muda Satyawan ◽  
Shelly Tutupoho ◽  
Yusli Wardiatno ◽  
Makoto Tsuchiya

Erosion rate on corals due to activities of other biota is called bioerosion. The rock-boring urchin, Echinometra mathaei, when it is abundant, plays a significant role in benthic ecosystems, including biological processes like coral erosion. During feeding, E. mathaei erodes calcium carbonate besides grazing on algae living on coral, so it plays an important role in both organic and inorganic carbons in coral reefs. The urchin E. mathaei actively feeds during the night time (nocturnal grazer). Although in Okinawa four types (A-D) of the urchin exist, the research only focused on the types A and B. Type A of E. mathaei produced 0.44951 g feces per day on average while type B produced 0.38030 g feces per day. CaCO3 analysis in feces and gut contents showed bioerosion rate of E. mathaei type A was 0.64492 g/individu/day, and 0.54436 g/individu/day in type B. There were no significant differences in bioerosion impact of E. mathaei type A and B© Laju erosi pada karang yang disebabkan oleh biota, dikenal dengan bioerosi. Bulu babi jenis Echinometra mathaei, ketika melimpah, menjadi sangat berpengaruh terhadap ekosistem bentik termasuk proses biologi seperti erosi karang. Selama aktivitas makan, E. mathaei menggerus kalsium karbonat dalam proporsi yang besar di samping alga yang tumbuh menempel pada karang sehingga memiliki peran penting dalam siklus karbon organik dan anorganik di ekosistem terumbu karang. Bulu babi E. mathaei aktif mencari makan pada malam hari (nocturnal grazer). Meskipun di Okinanawa ada 4 tipe (A-D), pada eksperimen kali ini memfokuskan pada tipe A dan B saja. Tipe A E. mathaei rata-rata memproduksi 0,44951 g feses/hari dan tipe B memproduksi 0,38030 g feses/hari. Berdasarkan analisis CaCO3 yang dilakukan pada feses dan isi lambung, laju bioerosi yang disebabkan oleh E. mathaei tipe A sebesar 0,64492 g/individu/hari sedangkan tipe B sebesar 0,54436 g/individu/hari. Tidak terdapat perbedaan dampak bioerosi yang signifikan antara E. mathaei tipe A dan B©


2016 ◽  
Vol 17 (4) ◽  
pp. 336-344 ◽  
Author(s):  
Pu Jiangpan ◽  
Meng Qingsheng ◽  
Yang Zhiwen ◽  
Zhu Tao
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Author(s):  
Xiaohua Fan ◽  
Chuanwei Wang ◽  
Junting Han ◽  
Xinli Ding ◽  
Shaocan Tang ◽  
...  

2021 ◽  
pp. 194338752110225
Author(s):  
Kathia Dubron ◽  
Maarten Verbist ◽  
Eman Shaheen ◽  
Titiaan Jacob Dormaar ◽  
Reinhilde Jacobs ◽  
...  

Study Design: Retrospective study. Objective: Zygomaticomaxillary complex (ZMC) fractures are common facial injuries with heterogeneity regarding aetiologies, fracture types, infraorbital nerve (ION) involvement, and treatment methods. The aim of this study was to identify associations between aetiologies, fracture types, and neurological complications. Additionally, treatment methods and recovery time were investigated. Methods: Medical files of 272 patients with unilateral and bilateral ZMC fractures were reviewed, whose cases were managed from January 2014 to January 2019 at the Department of Oral and Maxillofacial Surgery, University hospitals Leuven, Belgium. History of ION sensory dysfunction and facial nerve motoric dysfunction were noted during follow-up. Results: ION hypoaesthesia incidence was 37.3%, with the main causes being fall accidents, road traffic accidents, and interpersonal violence. Significant predictors of ION hypoaesthesia were Zingg type B fractures ( P = 0.003), fracture line course through the infraorbital canal ( P < .001), orbital floor fracture ( P < 0.001), and ZMC dislocation or mobility ( P = 0.001). Conclusion: Of all ZMC fractures, 37.3% exhibited ION hypoaesthesia. Only ZMC Zingg type B fractures (74.0%) were significantly more associated with ION hypoaesthesia. ION hypoesthesia was more likely (OR = 2.707) when the fracture line course ran through the infraorbital canal, and was less dependent on the degree of displacement. Neuropathic pain symptoms developed after ZMC fractures in 2.2% patients, posing a treatment challenge. Neuropathic pain symptoms were slightly more common among women, and were associated only with type B or C fractures. No other parameters were found to predict the outcome of this post-traumatic neuropathic pain condition.


2021 ◽  
Vol 22 (11) ◽  
pp. 5657
Author(s):  
Seounghun Lee ◽  
Hyo-Jung Shin ◽  
Chan Noh ◽  
Song-I Kim ◽  
Young-Kwon Ko ◽  
...  

Activation of nuclear factor-kappa B (NF-κB) in microglia plays a decisive role in the progress of neuropathic pain, and the inhibitor of kappa B (IκB) is a protein that blocks the activation of NF-κB and is degraded by the inhibitor of NF-κB kinase subunit beta (IKBKB). The role of IKBKB is to break down IκB, which blocks the activity of NF-kB. Therefore, it prevents the activity of NK-kB. This study investigated whether neuropathic pain can be reduced in spinal nerve ligation (SNL) rats by reducing the activity of microglia by delivering IKBKB small interfering RNA (siRNA)-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles. PLGA nanoparticles, as a carrier for the delivery of IKBKB genes silencer, were used because they have shown potential to enhance microglial targeting. SNL rats were injected with IKBKB siRNA-encapsulated PLGA nanoparticles intrathecally for behavioral tests on pain response. IKBKB siRNA was delivered for suppressing the expression of IKBKB. In rats injected with IKBKB siRNA-encapsulated PLGA nanoparticles, allodynia caused by mechanical stimulation was reduced, and the secretion of pro-inflammatory mediators due to NF-κB was reduced. Delivering IKBKB siRNA through PLGA nanoparticles can effectively control the inflammatory response and is worth studying as a treatment for neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document