Variations in nanomechanical properties of back-end Zr–2.5Nb pressure tube material

2013 ◽  
Vol 442 (1-3) ◽  
pp. 116-123 ◽  
Author(s):  
Matthew Gallaugher ◽  
Daniel Peykov ◽  
Nicolas Brodusch ◽  
Richard R. Chromik ◽  
Lisa Rodrigue ◽  
...  
Author(s):  
Douglas A. Scarth ◽  
Gordon K. Shek ◽  
Steven X. Xu

Delayed Hydride Cracking (DHC) in cold-worked Zr-2.5 Nb pressure tubes is of interest to the CANDU industry in the context of the potential to initiate DHC at an in-service flaw. Examples of in-service flaws are fuel bundle scratches, crevice corrosion marks, fuel bundle bearing pad fretting flaws and debris fretting flaws. To date, experience with fretting flaws has been favourable, and crack growth from an in-service fretting flaw has not been detected. However, postulated DHC growth from these flaws can result in severe restrictions on the allowable number of reactor Heatup/Cooldown cycles prior to re-inspection of the flaw, and it is important to reduce any unnecessary conservatism in the evaluation of DHC from the flaw. One method to reduce conservatism is to take credit for the increase in the isothermal threshold stress intensity factor for DHC initiation at a crack, KIH, as the flaw orientation changes from an axial flaw to a circumferential flaw in the pressure tube. This increase in KIH is due to the texture of the pressure tube material. An engineering relation that provides the value of KIH as a function of the orientation of the flaw relative to the axial direction in the pressure tube has been developed as described in this paper. The engineering relation for KIH has been validated against results from DHC initiation experiments on unirradiated cold-worked Zr-2.5 Nb pressure tube material.


2002 ◽  
Vol 33 (4) ◽  
pp. 1103-1115 ◽  
Author(s):  
N. Christodoulou ◽  
C. K. Chow ◽  
P. A. Turner ◽  
C. N. Tomé ◽  
R. J. Klassen

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1587-1593 ◽  
Author(s):  
Sang Log Kwak ◽  
Joon Seong Lee ◽  
Young Jin Kim ◽  
Youn Won Park

In the CANDU nuclear reactor, pressure tubes of cold-worked Zr-2.5Nb material are used in the reactor core to contain the nuclear fuel bundles and heavy water coolant. Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Pressure tube material gradually pick up deuterium, as such are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC), which is the characteristic of pressure tube integrity evaluation. If cracks are not detected, such a cracking mechanism could lead to unstable rupture of the pressure tube. Up to this time, integrity evaluations are performed using conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. In this respect, a probabilistic safety assessment method is more appropriate for the assessment of overall pressure tube safety. This paper describes failure criteria for probabilistic analysis and fracture mechanics analyses of the pressure tubes in consideration of DHC. Major input parameters such as initial hydrogen concentration, the depth and aspect ratio of an initial surface crack, DHC velocity and fracture toughness are considered as probabilistic variables. Failure assessment diagram of pressure tube material is proposed and applied in the probabilistic analysis. In all the analyses, failure probabilities are calculated using the Monte Carlo simulation. As a result of analysis, conservatism of deterministic failure criteria is showed.


1997 ◽  
Vol 32 (9) ◽  
pp. 1253-1260
Author(s):  
K.F. Amouzouvi ◽  
L.J. Clegg ◽  
C. Möβner ◽  
H. Tran ◽  
P. Grant ◽  
...  

2011 ◽  
Vol 64 (4-5) ◽  
pp. 395-399 ◽  
Author(s):  
R. V. Kulkarni ◽  
S. Neogy ◽  
B. N. Rath ◽  
K. Manikrishna ◽  
D. Srivastava ◽  
...  

2018 ◽  
Vol 508 ◽  
pp. 546-555 ◽  
Author(s):  
Rishi K. Sharma ◽  
A.K. Bind ◽  
G. Avinash ◽  
R.N. Singh ◽  
Asim Tewari ◽  
...  

Author(s):  
Heather Chaput ◽  
Brian W. Leitch ◽  
Don R. Metzger

Surface scratches and flaws encountered in CANDU nuclear pressure tubes must be evaluated to ensure that a cracking mechanism, called delayed hydride cracking (DHC), is not initiated. The stress concentration due to a flaw can cause diffusion of hydrogen and precipitation of zirconium hydride at the flaw tip. The presence of a hydride results in reduced fracture resistance in a local region where high stress prevails. In many cases, flaws exist for an extended period of time before the hydrogen content in the base material is sufficient to form a hydride. In this situation high stress creep can significantly relax the local stress at the flaw tip. The assessment of flaws on the basis of local stress distribution not considering creep is expected to be overly conservative, and may result in unnecessary remedial action in reactor operation and maintenance procedures. An experimental program has been developed to isolate and quantify the effect of creep on DHC in irradiated Zr-2.5%Nb pressure tube material. As part of this program, the thermal and load histories relevant to reactor operating conditions have been considered, and initial experimental results indicate that the action of creep increases the threshold load for crack initiation. Finite element analysis of creep relaxation around a hydride also supports the experimental results, and a fracture initiation model is applied to the experimental conditions in order to establish an analytical trend for the effect of creep. The quantitative effect predicted by the model is in reasonable agreement with the experimental results, and an improved, less conservative assessment procedure that accounts for creep is deemed to be practical.


Sign in / Sign up

Export Citation Format

Share Document