Analysis of steady-state thermal creep of Zr-2.5Nb pressure tube material

2002 ◽  
Vol 33 (4) ◽  
pp. 1103-1115 ◽  
Author(s):  
N. Christodoulou ◽  
C. K. Chow ◽  
P. A. Turner ◽  
C. N. Tomé ◽  
R. J. Klassen
2017 ◽  
Vol 698 ◽  
pp. 326-340 ◽  
Author(s):  
Kazi F. Ahmmed ◽  
Levente Balogh ◽  
Yasir Idrees ◽  
David Kerr ◽  
Mark R. Daymond

2013 ◽  
Vol 442 (1-3) ◽  
pp. 116-123 ◽  
Author(s):  
Matthew Gallaugher ◽  
Daniel Peykov ◽  
Nicolas Brodusch ◽  
Richard R. Chromik ◽  
Lisa Rodrigue ◽  
...  

Author(s):  
Douglas A. Scarth ◽  
Gordon K. Shek ◽  
Steven X. Xu

Delayed Hydride Cracking (DHC) in cold-worked Zr-2.5 Nb pressure tubes is of interest to the CANDU industry in the context of the potential to initiate DHC at an in-service flaw. Examples of in-service flaws are fuel bundle scratches, crevice corrosion marks, fuel bundle bearing pad fretting flaws and debris fretting flaws. To date, experience with fretting flaws has been favourable, and crack growth from an in-service fretting flaw has not been detected. However, postulated DHC growth from these flaws can result in severe restrictions on the allowable number of reactor Heatup/Cooldown cycles prior to re-inspection of the flaw, and it is important to reduce any unnecessary conservatism in the evaluation of DHC from the flaw. One method to reduce conservatism is to take credit for the increase in the isothermal threshold stress intensity factor for DHC initiation at a crack, KIH, as the flaw orientation changes from an axial flaw to a circumferential flaw in the pressure tube. This increase in KIH is due to the texture of the pressure tube material. An engineering relation that provides the value of KIH as a function of the orientation of the flaw relative to the axial direction in the pressure tube has been developed as described in this paper. The engineering relation for KIH has been validated against results from DHC initiation experiments on unirradiated cold-worked Zr-2.5 Nb pressure tube material.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1587-1593 ◽  
Author(s):  
Sang Log Kwak ◽  
Joon Seong Lee ◽  
Young Jin Kim ◽  
Youn Won Park

In the CANDU nuclear reactor, pressure tubes of cold-worked Zr-2.5Nb material are used in the reactor core to contain the nuclear fuel bundles and heavy water coolant. Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Pressure tube material gradually pick up deuterium, as such are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC), which is the characteristic of pressure tube integrity evaluation. If cracks are not detected, such a cracking mechanism could lead to unstable rupture of the pressure tube. Up to this time, integrity evaluations are performed using conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. In this respect, a probabilistic safety assessment method is more appropriate for the assessment of overall pressure tube safety. This paper describes failure criteria for probabilistic analysis and fracture mechanics analyses of the pressure tubes in consideration of DHC. Major input parameters such as initial hydrogen concentration, the depth and aspect ratio of an initial surface crack, DHC velocity and fracture toughness are considered as probabilistic variables. Failure assessment diagram of pressure tube material is proposed and applied in the probabilistic analysis. In all the analyses, failure probabilities are calculated using the Monte Carlo simulation. As a result of analysis, conservatism of deterministic failure criteria is showed.


Author(s):  
Brian W. Leitch ◽  
Nicolas Christodoulou ◽  
Ronald Rogge

The majority of the pressure-retaining components in the core of a CANDU power generation system are manufactured from zirconium. The horizontal fuel channel components and the fuel bundles that contain the natural uranium fuel are manufactured using various grades of zirconium. The fuel channel consists of two concentric tubes; an internally pressurized tube (Zr-2.5%Nb) that contains the fuel bundles (Zr-4) and the re-circulating heavy-water primary coolant, enclosed by a larger diameter calandria tube (Zircaloy) that separates the pressure tube from the heavy-water moderator. Re-fuelling and other fuel management operations can create surface defects in the tubes and fuel bundle sheathing. Stress analyses of these small notches may indicate that, under certain conditions, cracks can be formed at the root of these notches. These flaws are locations of stress concentration in the internally pressurized tube and can initiate a failure mechanism known as Delayed Hydride Cracking. The anisotropic material properties of these zirconium components adds an additional level of complexity in an analysis. However, the occurrences of these life-limiting events appear to be minimized mainly due to beneficial contributors such as stress relaxation around the scratches. One of the most likely reasons for this relaxation is thermal creep. Previously [1], the measurement and modeling of thermal creep relaxation under constant displacement was examined using 2-D finite element (FE) models. This paper extends both the measurement and modeling of the relaxing stress/strain field to the more demanding boundary condition of constant applied load. Neutron diffraction is used to determine the changing strain field around a single notched, axially orientated specimen loaded in tension. This specimen orientation and loading configuration is modeled in three dimensions using a hybrid explicit FE program [2] that contains materials subroutines that describe high stress creep specially developed to simulate the highly anisotropic creep response of pressure tube materials. Despite the difficulty of obtaining precise delineation of the moving strain field, a good agreement between the measurements and the 3-D FE creep results is achieved. Using the creep subroutines, the FE models are used to examine the creep response of a single notched, transversely orientated specimen loaded in tension in the hoop direction.


1997 ◽  
Vol 32 (9) ◽  
pp. 1253-1260
Author(s):  
K.F. Amouzouvi ◽  
L.J. Clegg ◽  
C. Möβner ◽  
H. Tran ◽  
P. Grant ◽  
...  

2011 ◽  
Vol 64 (4-5) ◽  
pp. 395-399 ◽  
Author(s):  
R. V. Kulkarni ◽  
S. Neogy ◽  
B. N. Rath ◽  
K. Manikrishna ◽  
D. Srivastava ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document