Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials

2021 ◽  
pp. 103750
Author(s):  
Haibao Liu ◽  
Qiuyi Li ◽  
Songyuan Ni ◽  
Liang Wang ◽  
Gongbing Yue ◽  
...  
2020 ◽  
Vol 9 (1) ◽  
pp. 303-322 ◽  
Author(s):  
Zhifang Zhao ◽  
Tianqi Qi ◽  
Wei Zhou ◽  
David Hui ◽  
Cong Xiao ◽  
...  

AbstractThe behavior of cement-based materials is manipulated by chemical and physical processes at the nanolevel. Therefore, the application of nanomaterials in civil engineering to develop nano-modified cement-based materials is a promising research. In recent decades, a large number of researchers have tried to improve the properties of cement-based materials by employing various nanomaterials and to characterize the mechanism of nano-strengthening. In this study, the state of the art progress of nano-modified cement-based materials is systematically reviewed and summarized. First, this study reviews the basic properties and dispersion methods of nanomaterials commonly used in cement-based materials, including carbon nanotubes, carbon nanofibers, graphene, graphene oxide, nano-silica, nano-calcium carbonate, nano-calcium silicate hydrate, etc. Then the research progress on nano-engineered cementitious composites is reviewed from the view of accelerating cement hydration, reinforcing mechanical properties, and improving durability. In addition, the market and applications of nanomaterials for cement-based materials are briefly discussed, and the cost is creatively summarized through market survey. Finally, this study also summarizes the existing problems in current research and provides future perspectives accordingly.


2021 ◽  
Vol 282 ◽  
pp. 122715 ◽  
Author(s):  
Haibin Yang ◽  
Manuel Monasterio ◽  
Dapeng Zheng ◽  
Hongzhi Cui ◽  
Waiching Tang ◽  
...  

2019 ◽  
Vol 140 (5) ◽  
pp. 2225-2235
Author(s):  
Yansheng Wang ◽  
Zhenhai Xu ◽  
Jinbang Wang ◽  
Zonghui Zhou ◽  
Peng Du ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3708
Author(s):  
Penghu Li ◽  
Haiyun Jin ◽  
Shichao Wei ◽  
Huaidong Liu ◽  
Naikui Gao ◽  
...  

Ceramizable composite is a kind of polymer matrix composite that can turn into ceramic material at a high temperature. It can be used for the ceramic insulation of a metal conductor because of its processability. However, poor low-temperature ceramization performance is a problem of ceramizable composites. In this paper, ceramizable composites were prepared by using silicone rubber as a matrix. Ceramic samples were sintered at different temperatures no more than 1000 °C, according to thermogravimetric analysis results of the composites. The linear contraction and flexural strength of the ceramics were measured. The microstructure and crystalline phase of ceramics were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the composites turned into ceramics at 800 °C, and a new crystal and continuous microstructure formed in the samples. The flexural strength of ceramics was 46.76 MPa, which was more than twice that of similar materials reported in other research sintered at 1000 °C. The maximum flexural strength was 54.56 MPa, when the sintering temperature was no more than 1000 °C. Moreover, glass frit and nano silica played important roles in the formation of the ceramic phase in this research. A proper content of nano silica could increase the strength of the ceramic samples.


2015 ◽  
Vol 2 (1) ◽  
pp. 1078018 ◽  
Author(s):  
Paratibha Aggarwal ◽  
Rahul Pratap Singh ◽  
Yogesh Aggarwal

2016 ◽  
Vol 126 ◽  
pp. 624-631 ◽  
Author(s):  
Mingle Liu ◽  
Zonghui Zhou ◽  
Xiuzhi Zhang ◽  
Xiangzi Yang ◽  
Xin Cheng

2019 ◽  
Vol 3 ◽  
pp. 121-123
Author(s):  
Shiju Joseph ◽  
Siva Uppalapati ◽  
Ozlem Cizer

Alkali activated materials (AAM) are generally cured at high temperatures to compensate for the low reaction rate. Higher temperature accelerates the reaction of AAM as in cement-based materials and this effect is generally predicted using Arrhenius equation based on the activation energy. While apparent activation energy is calculated from parallel isothermal calorimetry measurements at different temperatures, instantaneous activation energy is typically measured using a differential scanning calorimeter. Compared to the apparent activation energy, instantaneous activation energy has minimal effects on the microstructural changes due to the variation in temperature. In this work, the evolution of activation energy was determined by traditional methods and was compared with the instantaneous activation energy. It was found that while the activation energy changed with the progress of reaction over traditional methods, the instantaneous activation energy did not show any changes / or remained the same. The instantaneous activation energy was also found to be higher compared to the apparent activation energy determined with traditional methods.


Sign in / Sign up

Export Citation Format

Share Document