Synergistic effect of nano-silica and silica fume on hydration properties of cement-based materials

2019 ◽  
Vol 140 (5) ◽  
pp. 2225-2235
Author(s):  
Yansheng Wang ◽  
Zhenhai Xu ◽  
Jinbang Wang ◽  
Zonghui Zhou ◽  
Peng Du ◽  
...  
2016 ◽  
Vol 126 ◽  
pp. 624-631 ◽  
Author(s):  
Mingle Liu ◽  
Zonghui Zhou ◽  
Xiuzhi Zhang ◽  
Xiangzi Yang ◽  
Xin Cheng

2020 ◽  
Vol 9 (1) ◽  
pp. 303-322 ◽  
Author(s):  
Zhifang Zhao ◽  
Tianqi Qi ◽  
Wei Zhou ◽  
David Hui ◽  
Cong Xiao ◽  
...  

AbstractThe behavior of cement-based materials is manipulated by chemical and physical processes at the nanolevel. Therefore, the application of nanomaterials in civil engineering to develop nano-modified cement-based materials is a promising research. In recent decades, a large number of researchers have tried to improve the properties of cement-based materials by employing various nanomaterials and to characterize the mechanism of nano-strengthening. In this study, the state of the art progress of nano-modified cement-based materials is systematically reviewed and summarized. First, this study reviews the basic properties and dispersion methods of nanomaterials commonly used in cement-based materials, including carbon nanotubes, carbon nanofibers, graphene, graphene oxide, nano-silica, nano-calcium carbonate, nano-calcium silicate hydrate, etc. Then the research progress on nano-engineered cementitious composites is reviewed from the view of accelerating cement hydration, reinforcing mechanical properties, and improving durability. In addition, the market and applications of nanomaterials for cement-based materials are briefly discussed, and the cost is creatively summarized through market survey. Finally, this study also summarizes the existing problems in current research and provides future perspectives accordingly.


2021 ◽  
Vol 282 ◽  
pp. 122715 ◽  
Author(s):  
Haibin Yang ◽  
Manuel Monasterio ◽  
Dapeng Zheng ◽  
Hongzhi Cui ◽  
Waiching Tang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2232
Author(s):  
Huiwen Wan ◽  
Zhangyin Hu ◽  
Gang Liu ◽  
Jiadong Xiao

Electrical properties are one of the essential parameters of cement-based materials used in suspension porcelain insulators. This paper studied the electrical properties of aluminate cement adhesives (ACA) containing silica fume (SF), as well as their compressive strength and porosity. The results indicated that the addition of silica fume improved the resistivity of ACA under a saturated state (relative humidity is 50%). This was mainly attributed to the decrease of the ACA’s pore connectivity due to the SF’s filling effect. However, the early compressive strength of ACA was slightly reduced by the addition of SF. Under an unsaturated state, the ACA’s resistivity without the SF gradually exceeded that with the SF at the extension of drying time. The nuclear magnetic resonance (NMR) results indicated that the addition of SF content increased the ACA’s porosity; for the tiny pores especially, (the size less than 25 nm), this increased by 3.4%. Meanwhile, the addition of SF increased the tortuosity of the ACA’s conductive channels, which could improve its resistivity. Therefore, SF is recommended to be used in cement-based adhesives on insulators to lower the cost and improve the resistivity.


2018 ◽  
Vol 68 (330) ◽  
pp. 157 ◽  
Author(s):  
C. Argiz ◽  
E. Reyes ◽  
A. Moragues

By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement) and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.


2011 ◽  
Vol 374-377 ◽  
pp. 1537-1540
Author(s):  
Dong Lin ◽  
Zi Yun Wen

The comparison experiments are carried out at different silica fume dosage between the silica fume with pre-treatment and the silica fume without pre-treatment. The results show that the pre-treatment of silica fume improved the strength greatly and the silica fume dosage corresponding to the strength peak somewhat moved forward from 0.20 for the cement-based materials with pre-treatment of silica fume to 0.21 for the cement-based materials without pre-treatment of silica fume. The particles distribution experiment results indicate that after the pre-treatment of silica fume, the average particle diameter of silica fume reduced from 2.865μmto 0.151μm. Based on Aim-Goff model, it is concluded that the increase in the compressive strength and flextural strength of cement-based materials with pre-treatment of silica fume, are attributed to the dispersion of silica fume agglomeration and the increase in the packing density of the cement-based materials.


Sign in / Sign up

Export Citation Format

Share Document