Investigation of an auxiliary option to meet local energy demand via an innovative small-scale geothermal-driven system; a seasonal analysis

2021 ◽  
pp. 103902
Author(s):  
Hassan Athari ◽  
Farshid Kiasatmanesh ◽  
Maghsoud Abdollahi Haghghi ◽  
Farshad Teymourzadeh ◽  
Hassan Yagoublou ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1862
Author(s):  
Alexandros-Georgios Chronis ◽  
Foivos Palaiogiannis ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Panos Kotsampopoulos ◽  
Nikos Hatziargyriou

In this paper, we investigate the economic benefits of an energy community investing in small-scale photovoltaics (PVs) when local energy trading is operated amongst the community members. The motivation stems from the open research question on whether a community-operated local energy market can enhance the investment feasibility of behind-the-meter small-scale PVs installed by energy community members. Firstly, a review of the models, mechanisms and concepts required for framing the relevant concepts is conducted, while a clarification of nuances at important terms is attempted. Next, a tool for the investigation of the economic benefits of operating a local energy market in the context of an energy community is developed. We design the local energy market using state-of-the-art formulations, modified according to the requirements of the case study. The model is applied to an energy community that is currently under formation in a Greek municipality. From the various simulations that were conducted, a series of generalizable conclusions are extracted.


Author(s):  
Hasham Khan

The rapid increase in the population and fastest development in the industrial sector has increased the energy demand throughout the world. Frequent outages and load shedding has seriously deteriorated the efficiency of the electrical power distribution system. Under such circumstances, the implementation of Distributed Generation (DG) is increasing. Small hydel generators are considered as the most-clean and economical for generating electrical energy. These are very complex nonlinear generators which usually exhibits low frequency electromechanical oscillations due to insufficient damping caused by severe operating conditions. These DGs are not connected to the utility in many cases because, under varying load, they cannot maintain the frequency to the permissible value. This work presents detailed analysis of operating characteristics and proposes a hybrid frequency control strategy of the small hydel systems. The simulation and testing is performed in MATLAB, the results verified the improved performance with the recommended method. The proposed method conserves half of the power consumption. The control scheme regulates the dump load by connecting and disconnecting it affectively. The application of presented methodology is convenient in the deregulated environment, especially under the severe shortage of energy. The proposed model keeps the frequency of system at desired level. It reduces the noise, thereby improving the response time of the designed controller as compared to conventional controllers. The innovative scheme also provides power for small scale industrial, agricultural and other domestic application of far-off areas where the supply of utility main grid is difficult to provide. The recommended scheme is environmental friendly and easy to implement wherever small hydel resources are available.


2020 ◽  
Vol 15 (3) ◽  
pp. 183-190
Author(s):  
Kshitiz Khanal ◽  
Bivek Baral

As most nations have adopted the Sustainable Development agenda to achieve the 17 Sustainable Development Goals (SDGs) by 2030, it is vital that planning of energy systems at local, regional and national levels also align with the agenda in order to achieve the goals. This study explores the sustainability of primary energy resources of a rural community to meet growing demands of the community, in order to achieve SDGs for energy access Goal no. 7 (SDG7) at local level. Using a linear back-casting techno-economic energy access model that informs the expected change in energy demand in order to reach SDG7 targets, this study examined whether local energy resources would be enough to achieve the targets for Barpak VDC (named such at the time of data collection before Nepal’s administrative restructuring), and explored the possibility of importing electricity from national grid to attain SDG7 targets. By analyzing the outputs of the model for Barpak, we found that currently assessed local energy resources are insufficient to meet the energy access targets. Importing electricity from national grid, in addition to the mini-hydropower plant currently in operation at Barpak is needed to achieve the targets. Huge cost investment and timely expansion of transmission and distribution infrastructure is crucial. By 2030, total energy demand is expected to grow up to 50,000 Gigajoules per year. Electricity import from national grid grows steadily, reaching up to 45,000 Gigajoules in 2030. The social costs of energy will continue to be dominated by household sector till 2030, reaching up to 30 million Nepali Rupees per year in total. Use of wood as fuel, the only significant source of emission in the model is modeled to decrease linearly and stop by 2030, as required by SDGs. Emission of 17 Metric Tonnes of Carbon-dioxide and 4.5 million kg Methane equivalent is reduced to zero at 2030. This model serves as an innovative approach to integrate SDG targets to local and regional energy planning process, and can be adopted for energy systems and policy planning for various regions in Nepal.


2019 ◽  
Vol 9 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Craig Alexander Burton ◽  
Christopher Ryan ◽  
Behzad Rismanchi ◽  
Seona Candy

Purpose The purpose of this paper is to test a new methodology for simulating shared electricity generation among small groups of neighbours with Ostrom’s (1994) principles of common pool resource (CPR) (human behaviour-based) efficiencies. The approach does not anticipate exclusive off-grid communities but instead, diverse energy users taking advantage of the averaging effects of aggregation, the social benefits of a CPR and direct action on emissions. Design/methodology/approach The study tested three groups of five adjacent − or same-building − neighbours for three months to measure how electricity demand (import) is affected by an in-home display issuing nudges and sanctions by the group around a simulated (limited capacity) shared solar and battery system. A control group of six homes’ energy data was obtained for the same period. Findings Two groups reduced their energy demand with weak but significant correlation between stimulus and reduced energy demand and one group increased demand. There were no significant effects in time-of-use behaviours. Research limitations/implications The study shows that the interaction between consumers and energy systems can in this instance be simulated with inexpensive equipment. Studying dynamic interactions between people and systems provides new data where supply simulations have been one-sided. There is support in this work that the energy supply can be presented as a rivalrous commons system. Practical implications Urban adjacent neighbours (and apartment occupants in the same building or campus) exhibit emergent group behaviours around electricity use conservation and time-of-use. Managing energy demand is very difficult but very important for making consumer behaviour “fit” the future supply of energy which may be unreliable and limited. Social implications There are likely social benefits and other overflow benefits when neighbours can share a critical resource. There are other critical services that may be managed according to the Ostrom commons principles. The sharing group will be more resilient in terms of electricity but also in terms of social capital. Originality/value The work builds on the work of Rachel Coxcoon and others who have identified that groups perform better at certain challenges than individuals do. This aligns with scale and operational efficiencies in shared renewable energy infrastructure. Shaping behaviour and the generation systems together for optimal outcomes is new work.


Author(s):  
Andre´ L. C. Fujarra ◽  
Eduardo A. Tannuri ◽  
Isai´as Q. Masetti ◽  
Haroldo Igreja

The installations of sub-sea equipments are very complex operations, requiring previous analysis in order to define the correct procedure and the environmental “window” for a safe operation. This paper addresses the installations of a Mid Water Arch (MWA) that consists of a structure to provide risers support. Connecting the risers to the MWA largely eliminates the dynamic forces that would otherwise cause friction and fatigue. Such structure is composed by the riser guides and several buoyancy tanks. It is kept in the water by means of tethers connected to an anchor. The MWA is to be installed 42m from the seabed. The installation procedure has several steps evolving the launching of each component of the MWA (anchor, main structure and the tethers). A tug boat with an A-frame is used during the whole launching, and an assisting vessel is required to keep the buoy away from the tether and the launching cable. The presence of exciting waves induces oscillatory motions in the whole system, and may cause large dynamic forces in the cables and tethers. Due to the complexity of the multi-body system, a comprehensive numerical and experimental analysis was then carried out in order to dimensioning the launching cables and to define the limit environmental condition. The numerical analysis was carried out in the Numerical Offshore Tank (TPN), a multi-processor offshore system simulator that considers the 6 DOF of each body and all environmental forces acting in them. The lines are modeled by finite-element method. Furthermore, a full set of small-scale experiments were carried out at the State of Sa˜o Paulo Technological Research Institute (IPT) towing tank, considering the system excited by a sinusoidal motion at the top, emulating the wave excitation. Comparisons between numerical and experimental results were performed, with good adherence between them. The validated numerical simulator was then used to make predictions of the behavior of the systems during the installation, considering several environmental conditions and configurations.


2018 ◽  
Vol 91 (3) ◽  
pp. 255-258
Author(s):  
Upendra Singh Bhadauria ◽  
Pralhad L Dasar ◽  
Sandesh N. ◽  
Prashant Mishra ◽  
Shaijal Godha

Law influences every aspect of human activity, and dentistry in this regard is no exception. Ethical standards of the dental profession are seeing a steady decline, altruistic concepts being overridden by a market driven system. A deficient knowledge regarding the medico-legal aspects halts the effective implementation and delivery of efficient services. The review thus provides an overview of ethical standards, consents and their types, negligence,, determination of negligence, liabilities of dental practitioners and solicitors in dental practices, which comprehensively form an integral part of the medico-legal aspect of dental practice.


2020 ◽  
Vol 190 ◽  
pp. 00032
Author(s):  
Rapha Nichita Kaikatui ◽  
Adik Putra Andika ◽  
Vinsenius Letsoin ◽  
Paulus Mangera ◽  
Damis Hardiantono ◽  
...  

Energy demand increases in line with rapid technological advances. Research on the harvesting of renewable energy continues to be done to make efforts to convert heat energy, which is very abundant in our daily environment. Thermoelectric technology is an alternative source in answering energy needs and can produce energy on a large and small scale. Thermoelectric technology works by converting heat energy into electricity directly, or from electricity to cold. This research presents an experimental study conducted to find out the thermoelectric characteristics of the TEC in the reversal function, with heating and cooling tests on each side of the TEC type thermoelectric element, carried out to obtain the voltage value as the electrical potential generated from this element. The result is thermoelectric potential to generate DC electricity but is very limited in the function of maintaining a heat source on the hot side element. This research then proposes thermal metamaterial that functions as a collector of thermal energy in the method of converting thermal energy into DC electrical energy for the application of low power consumption communication systems.


2019 ◽  
Vol 26 (4) ◽  
pp. 429-443 ◽  
Author(s):  
Joseph E. Borovsky ◽  
Adnane Osmane

Abstract. Using the solar-wind-driven magnetosphere–ionosphere–thermosphere system, a methodology is developed to reduce a state-vector description of a time-dependent driven system to a composite scalar picture of the activity in the system. The technique uses canonical correlation analysis to reduce the time-dependent system and driver state vectors to time-dependent system and driver scalars, with the scalars describing the response in the system that is most-closely related to the driver. This reduced description has advantages: low noise, high prediction efficiency, linearity in the described system response to the driver, and compactness. The methodology identifies independent modes of reaction of a system to its driver. The analysis of the magnetospheric system is demonstrated. Using autocorrelation analysis, Jensen–Shannon complexity analysis, and permutation-entropy analysis the properties of the derived aggregate scalars are assessed and a new mode of reaction of the magnetosphere to the solar wind is found. This state-vector-reduction technique may be useful for other multivariable systems driven by multiple inputs.


Sign in / Sign up

Export Citation Format

Share Document