Interradicular canals in 213 mandibular and 235 maxillary molars by means of micro-ct analysis: An ex vivo study

Author(s):  
Andrea Lisa Anderegg ◽  
Djeneta Hajdarevic ◽  
Thomas Gerhard Wolf
2021 ◽  
Vol 11 (11) ◽  
pp. 5060
Author(s):  
Andrea Baldi ◽  
Allegra Comba ◽  
Edoardo Alberto Vergano ◽  
Michail L. Vakalis ◽  
Mario Alovisi ◽  
...  

Objective. The purpose of this ex vivo study was to compare the trueness of traditional and digital workflows and to analyze the interfacial fit of CAD/CAM restorations on gypsum and 3D-printed casts (3DC). Methods: Forty patients underwent indirect posterior adhesive restorations. After tooth preparation, both traditional and chairside procedures were followed. Obtained models were scanned to generate STL files of the intraoral impression (IOS), the conventional cast (RS), and the 3D-printed cast (3DCS). Superimposition of the casts was performed to evaluate trueness. Then, for each preparation, two identical CAD/CAM restorations were milled and luted on RS and 3DC. Micro-CT scan was performed to evaluate 3D interfacial fit. Results. Surface trueness analysis showed no significant differences among groups (p > 0.05), with average trueness ranging from 11.56 to 17.01 µm. Micro-CT analysis showed significant differences between gypsum casts (average ranging from 135.78 to 212.31 µm) and 3DC (average ranging from 57.63 to 144.55 µm) for both marginal and internal fit. Conclusions. In adhesive restorations manufacturing, digital and conventional procedures generate casts that are not significantly different. Marginal fit of adhesive restorations is similar to conventional crown design and clinically acceptable. It is assumable that a direct digital workflow could benefit from the usage of 3DC.


2021 ◽  
pp. 146531252110661
Author(s):  
Gaston F Coutsiers Morell ◽  
Yuli Berlin-Broner ◽  
Carlos Flores-Mir ◽  
Giseon Heo

Objective: To quantify tooth volume differences from extracted teeth when using three different three-dimensional (3D) computed tomography (CT)-based imaging modalities. Design: Ex vivo study. Setting: Laboratory and clinics of the University of Alberta. Methods: Cone-beam CT (CBCT) of 12 extracted teeth were scanned using 0.25- and 0.30-mm voxel size from CBCT and a 0.06-mm voxel size from micro-CT (reference standard). 3D reconstructions for each tooth from each imaging modality were made through the software ITK-SNAP®. The mean volume differences between each pair of scanning modalities were calculated and then compared and analysed through a repeated measures ANOVA. Results: The average overestimations of the teeth volume were 15.2% for the high-resolution CBCT and 28.1% for the low-resolution CBCT compared to micro-CT measurements. The differences in absolute volume were 81.6 mm3 and 152.8 mm3, respectively. All differences were statistically significant ( P < 0.05). Conclusions: Orthodontists and researchers who assess root resorption through CBCT imaging should be aware that the depicted volumes may likely be overestimating tooth volume and camouflaging real root volumetric treatment changes.


2020 ◽  
Vol 10 (12) ◽  
pp. 4328 ◽  
Author(s):  
Ilaria Campioni ◽  
Raffaella Pecci ◽  
Rossella Bedini

Micro-computed tomography (micro-CT) is a consolidated imaging technology allowing non-destructive three-dimensional (3D) qualitative and quantitative analysis by the observation of microstructures with high resolution. This paper aims at delivering a structured overview of literature about studies performed using micro-CT in dentistry and maxillofacial surgery (MFS) by analyzing the entire set of articles to portray the state of the art of the last ten years of scientific publications on the topic. It draws the scenario focusing on biomaterials, in vitro and in/ex vivo applications, bone structure analysis, and tissue engineering. It confirms the relevance of the micro-CT analysis for traditional research applications and mainly in dentistry with respect to MFS. Possible developments are discussed in relation to the use of the micro-CT combined with other, traditional, and not, techniques and technologies, as the elaboration of 3D models based on micro-CT images and emerging numerical methods. Micro-CT results contribute effectively with whose ones obtained from other techniques in an integrated multimethod approach and for multidisciplinary studies, opening new possibilities and potential opportunities for the next decades of developments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Gerhard Wolf ◽  
Andrea Lisa Anderegg ◽  
David Haberthür ◽  
Oleksiy-Zakhar Khoma ◽  
Sven Schumann ◽  
...  

AbstractThe aim of this study was to investigate the root canal system morphology by means of a root canal configuration (RCC) classification described with a four-digit system, the physiological foramen geometry and accessory canal frequency and morphology, of 101 mandibular canines (MaCa) of a Swiss-German population by means of micro-computed tomography. Micro-CT examination of the MaCa was performed and the obtained images analyzed with a 3D imaging software. In single-rooted MaCas, the most frequently observed RCCs were 1-1-1/1 (74.5%) and 1-1-1/2 (14.3%). Seven other RCCs were less frequently observed with a frequency from 4.1 to 1.0%. One physiological foramen was observed in 80.6% of the MaCas, two in 16.3%, three in 1.0% and four in 2.0%. Accessory and connecting canals were apparent only in the middle and apical root thirds. Two-rooted MaCas occurred less frequently (n = 3). When one physiological foramen was present, the mean size of the narrow and wide diameters were 0.28 mm (± 0.07) and 0.40 mm (± 0.11), while the distance between physiological and anatomical foramen was 0.45 mm (± 0.17). MaCas are predominantly single-rooted teeth with a 1-1-1/1 or 1-1-1/2 RCC. Most MaCas had one physiological foramen with an oval shape.


2021 ◽  
Vol 10 (8) ◽  
pp. 1719
Author(s):  
Hae Jin An ◽  
Hyunjung Yoon ◽  
Hoi In Jung ◽  
Dong-Hoon Shin ◽  
Minju Song

This study aimed to quantify and compare the obturation quality after mineral trioxide aggregate (MTA) orthograde fillings with three different obturation techniques. Thirty-three extracted human maxillary molars were collected. Distobuccal and palatal canals were prepared to an apical size of #40/06 with a Profile Ni-Ti system. All 66 canals were divided into two groups according to the material (EZ-seal or OrthoMTA) and then obturated using three different techniques: manual compaction using S-kondenser (group H), compactor activation (group C), or reverse rotary motion of Ni-Ti file (group R). The obturated roots were scanned using micro-computed tomography (micro-CT). The percentage of voids located in the apical 5 mm was measured separately, that is, closed, open, and total porosity. There was no relation between the filling material and obturation technique (p > 0.05). The percentage volume of open and total porosity was higher in EZ-seal than in OrthoMTA (open: p = 0.002, total: p = 0.001). Group H showed higher open and total porosity than groups C and R. Micro-CT analysis showed that the void volume after orthograde MTA fillings significantly decreased when the additional activation was accompanied by hand condensation. Obturation with a Ni-Ti file using reverse motion could be recommended as an MTA orthograde filling technique.


2020 ◽  
Author(s):  
Rafael Heiss ◽  
Frank W. Roemer ◽  
Christoph Lutter ◽  
Rolf Janka ◽  
Volker Schöffl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document