scholarly journals Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality

2021 ◽  
pp. 153581
Author(s):  
Tania Mesa ◽  
Javier Polo ◽  
Alba Arabia ◽  
Vicent Caselles ◽  
Sergi Munné-Bosch
2011 ◽  
Vol 8 (10) ◽  
pp. 588-599 ◽  
Author(s):  
Catherine O’Brien ◽  
Laurie A. Blanchard ◽  
Bruce S. Cadarette ◽  
Thomas L. Endrusick ◽  
Xiaojiang Xu ◽  
...  

2018 ◽  
Vol 45 (No. 2) ◽  
pp. 76-82 ◽  
Author(s):  
Rodica Soare ◽  
Maria Dinu ◽  
Cristina Babeanu

This study was aimed at observing the effect of the grafting of tomato plants on morphological (vegetative growth), production and nutritive characteristics (quantity and quality of production). For this purpose, the ‘Lorely F1’ cultivar was used as a scion grafted onto the ‘Beaufort’ rootstock. Plants were cultivated with a stem and two stems. The observations collected in this study were concerned with the characteristics of plant growth. The studied morphological characteristics were plant height, stem diameter and number of leaves, and the studied production characteristics were the characteristics of fructification and productivity (the average number of fruit per plant, the average weight of the fruit, production per plant). Particular attention was paid to the nutritional characteristics of the fruit, to the fruit quality (total soluble solids, total sugar, acidity, vitamin C, antioxidant activity (by the Trolox method) and the contents of lycopene and beta-carotene). The results showed that grafting positively influenced the growth and production characteristics. Grafting of tomato plants had an appreciable effect on the vegetative growth of the variant 2-grafted tomatoes with a stem. The best option in terms of productivity and production was the variant 3-grafted tomatoes with two stems, which yielded 9.2 kg per plant. Fruit quality was not improved in any of the grafted variants. 


2022 ◽  
Vol 12 ◽  
Author(s):  
Fei Ding ◽  
Liming Ren ◽  
Fang Xie ◽  
Meiling Wang ◽  
Shuoxin Zhang

Both jasmonic acid (JA) and melatonin (MT) have been demonstrated to play positive roles in cold tolerance, however, whether and how they crosstalk in the cold responses in plants remain elusive. Here, we report that JA and MT act synergistically in the cold tolerance in tomato plants (Solanum lycopersicum). It was found that JA and MT were both substantially accumulated in response to cold stress and foliar applications of methyl jasmonate (MeJA) and MT promoted cold tolerance as evidenced by increased Fv/Fm, decreased relative electrolyte leakage (EL) and declined H2O2 accumulation in tomato plants. Inhibition of MT biosynthesis attenuated MeJA-induced cold tolerance, while inhibition of JA biosynthesis reduced MT accumulation in tomato plants under cold conditions. Furthermore, qRT-PCR analysis showed that the expressions of two MT biosynthetic genes, SlSNAT and SlAMST, were strongly induced by MeJA, whereas suppression of SlMYC2, a master JA signaling regulator, abated the expressions of SlSNAT and SlAMST under cold stress. Additionally, suppression of SlMYC2 reduced MT accumulation, decreased Fv/Fm and increased EL in cold-stressed tomato plants. Interestingly, exogenous MT promoted JA accumulation, while inhibition of MT biosynthesis significantly reduced JA accumulation in tomato plants under the cold condition. Taken together, these results suggest that JA and MT act cooperatively in cold tolerance and form a positive feedback loop, amplifying the cold responses of tomato plants. Our findings might be translated into the development of cold-resistant tomato cultivars by genetically manipulating JA and MT pathways.


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 1062-1068
Author(s):  
Mohamad-Hossein Sheikh-Mohamadi ◽  
Nematollah Etemadi ◽  
Mostafa Arab

Excessive heat or cold usually reduces the growth and quality of turfgrass. Genetic variations along with efficient biochemical and physiological mechanisms can diversify the tolerance to heat and cold. This study examined the effects of heat and cold stress on several biochemical and physiological parameters in Iranian tall fescue ecotypes (Festuca arundinacea L.). The control group of plants was maintained under optimal temperatures, whereas other groups were exposed to heat or cold in a growth chamber. The experiment was designed as a split plot, with stress treatments as the main plots and ecotypes as subplots. Physiologically and biochemically, the results revealed that three ecotypes (‘FA1’, ‘FA3’, and ‘FA5’) of the eight ecotypes examined in this study had better abilities to survive the simulated heat and cold stress. Better tolerance to heat and cold in the ‘FA1’, ‘FA3’, and ‘FA5’ ecotypes were probably due to higher levels of enzymatic and nonenzymatic antioxidant activities, maintenance of lower levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), higher levels of proline and total nonstructural carbohydrates (TNC), along with a more efficient osmotic adjustment. Diamine oxidase (DAO) and polyamine oxidase (PAO) activities increased significantly in ‘FA1’, ‘FA3’, and ‘FA5’ ecotypes. In summary, the strength of tolerance among ecotypes can be ranked as ‘FA1’ > ‘FA3’ > ‘FA5’ > ‘FA2’ > ‘FA6’ > ‘FA4’ > ‘FA7’ > ‘FA8’ under heat stress and ‘FA5’> ‘FA1’ > ‘FA3’ > ‘FA2’ > ‘FA4’ > ‘FA6’ > ‘FA7’ > ‘FA8’ under cold stress.


Author(s):  
Temple Grandin

Abstract This chapter describes how to write clear animal welfare standards and guidelines that will be interpreted the same way by different people; the difference between animal-based outcome measures and input resource-based standards; how to determine the most important core criteria or critical points to prevent abuse or neglect; easy-to-use measures for assessing body condition, lameness, injuries, condition of haircoat/feathers, animal handling, hygiene, heat and cold stress and the presence of abnormal behaviour and how to set up effective animal welfare auditing programmes.


Author(s):  
Nanda Kaji Budhathoki ◽  
Kerstin K. Zander

Farmers worldwide have to deal with increasing climate variability and weather extremes. Most of the previous research has focused on impacts on agricultural production, but little is known about the related social and economic impacts on farmers. In this study, we investigated the social and economic impact of extreme weather events (EWE) on farmers in Nepal, and explored how they coped with and adapted to heat waves and cold spells between 2012 and 2017. To address these aims, we conducted a survey of 350 farms randomly selected from the Bardiya and Banke districts of the Terai lowlands of Nepal. They were specifically asked to rate the impacts of extreme temperatures, as well as their effect on labour productivity and collective farmer health, and the detailed preventative measures they had implemented. About 84% of the farmers self-reported moderate or severe heat stress during the last five years, and about 85%, moderate or severe cold stress. Likewise, the majority of respondents reported that both farmer health and labour productivity had been compromised by EWEs. Productivity loss had a strong association with the perceived levels of heat and cold stress, which, in turn, were more likely to be reported by farmers with previous EWE experience. Potentially due to the increased care required during EWEs, those farmers with livestock reported increased heat and cold stress, as, surprisingly, did those who had implemented adaptation measures. Farmers seemed to be less prepared for potential threats of cold spells than heat waves, and therefore less likely to adopt coping strategies, since these are a recent phenomenon. This study identified some limitations. The cross sectional and self-reported data, as a common source of information to estimate health impact, level of heat/cold stress and labour productivity loss. Community-based education/community engagement programs could be developed to facilitate proactive adaptation.


Sign in / Sign up

Export Citation Format

Share Document