scholarly journals The impact of thermal conductivity and diffusion rates on water vapor transport through gas diffusion layers

2009 ◽  
Vol 190 (2) ◽  
pp. 485-492 ◽  
Author(s):  
Sergei F. Burlatsky ◽  
Vadim V. Atrazhev ◽  
Mallika Gummalla ◽  
Dave A. Condit ◽  
Fuqiang Liu
Author(s):  
Hamidreza Sadeghifar ◽  
Ned Djilali ◽  
Majid Bahrami

Through-plane thermal conductivity of 14 SIGRACET gas diffusion layers (GDLs), including series 24 & 34, as well as 25 & 35, are measured under different compressive pressures, ranging from 2 to 14 bar, at the temperature of around 60 °C. The effect of compression, PTFE loadings, and micro porous layer (MPL) on thermal conductivity of the GDLs and their contact resistance with an iron clamping surface is experimentally investigated. The contact resistance of MPL coated on GDL with the substrate of that GDL is measured for the first time in this paper. A new robust mechanistic model is presented for predicting the through-plane thermal conductivity of GDLs treated with PTFE and is successfully verified with the present experimental data. The model can predict the experimentally-observed reduction in thermal conductivity as a result of PTFE treatment and provides detailed insights on performance modeling of PEMFCs.


2020 ◽  
Vol 8 ◽  
Author(s):  
Mahdi Jafari ◽  
Isabelle Gouttevin ◽  
Margaux Couttet ◽  
Nander Wever ◽  
Adrien Michel ◽  
...  

2007 ◽  
Vol 8 (4) ◽  
pp. 790-804 ◽  
Author(s):  
Jinwon Kim ◽  
Hyun-Suk Kang

Abstract To understand the influence of the Sierra Nevada on the water cycle in California the authors have analyzed low-level winds and water vapor fluxes upstream of the mountain range in regional climate model simulations. In a low Froude number (Fr) regime, the upstream low-level wind disturbances are characterized by the rapid weakening of the crosswinds and the appearance of a stagnation point over the southwestern foothills. The weakening of the low-level inflow is accompanied by the development of along-ridge winds that take the form of a barrier jet over the western slope of the mountain range. Such upstream wind disturbances are either weak or nonexistent in a high-Fr case. A critical Fr (Frc) of 0.35 inferred in this study is within the range of those suggested in previous observational and numerical studies. The depth of the blocked layer estimated from the along-ridge wind profile upstream of the northern Sierra Nevada corresponds to Frc between 0.3 and 0.45 as well. Associated with these low-level wind disturbances are significant low-level southerly moisture fluxes over the western slope and foothills of the Sierra Nevada in the low-Fr case, which result in significant exports of moisture from the southern Sierra Nevada to the northern region. This along-ridge low-level water vapor transport by blocking-induced barrier jets in a low-Fr condition may result in a strong north–south precipitation gradient over the Sierra Nevada.


2021 ◽  
pp. 1-40
Author(s):  
Qingzhe Zhu ◽  
Yuzhi Liu ◽  
Tianbin Shao ◽  
Run Luo ◽  
Ziyuan Tan

AbstractThe Tibetan Plateau (TP), the “Water Tower of Asia”, plays an important role in the water cycle. However, few studies have linked the TP’s water vapor supply with the climate over North China. In this study, we found that changes in the subtropical westerly jet (SWJ) dynamically induce drought in North China, and the TP plays an important role in this relationship. During July-August for the period of 1981-2019, the SWJ center between 75°E and 105°E obviously shifted northward at a rate of 0.04° per year. Correspondingly, the zonal winds in the southern subtropics were incredibly weakened, causing the outflow of water vapor from the TP to decrease dramatically. Combined with numerical simulations, we discovered that a reduction in water vapor transport from the TP can obviously decrease the precipitation over North China. Sensitivity experiments demonstrated that if the water vapor outflow from the eastern border of the TP decreases by 52.74%, the precipitation in North China will decrease by 12.69% due to a decrease in the local cloud fraction caused by a diminished water vapor content in the atmosphere. Therefore, although less water vapor transport occurs in the upper troposphere than in the lower troposphere, the impact of transport from the TP in the former on the downstream precipitation cannot be ignored.


2006 ◽  
Vol 129 (9) ◽  
pp. 1109-1118 ◽  
Author(s):  
Chaitanya J. Bapat ◽  
Stefan T. Thynell

The focus of this work is to study the effects of anisotropic thermal conductivity and thermal contact conductance on the overall temperature distribution inside a fuel cell. The gas-diffusion layers and membrane are expected to possess an anisotropic thermal conductivity, whereas a contact resistance is present between the current collectors and gas-diffusion layers. A two-dimensional single phase model is used to capture transport phenomena inside the cell. From the use of this model, it is predicted that the maximum temperatures inside the cell can be appreciably higher than the operating temperature of the cell. A high value of the in-plane thermal conductivity for the gas-diffusion layers was seen to be essential for achieving smaller temperature gradients. However, the maximum improvement in the heat transfer characteristics of the fuel cell brought about by increasing the in-plane thermal conductivity is limited by the presence of a finite thermal contact conductance at the diffusion layer/current collector interface. This was determined to be even more important for thin gas-diffusion layers. Anisotropic thermal conductivity of the membrane, however, did not have a significant impact on the temperature distribution. The thermal contact conductance at the diffusion layer/current collector interface strongly affected the temperature distribution inside the cell.


Sign in / Sign up

Export Citation Format

Share Document