Proteomics analysis of N-methyl-d-aspartate-induced cell death in retinal and optic nerves

2021 ◽  
pp. 104427
Author(s):  
Lingge Suo ◽  
Wanwei Dai ◽  
Xuhao Chen ◽  
Xuejiao Qin ◽  
Guanlin Li ◽  
...  
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Pia Grotegut ◽  
Natarajan Perumal ◽  
Sandra Kuehn ◽  
Andreas Smit ◽  
H. Burkhard Dick ◽  
...  

Abstract Background Previous studies noted that intravitreal injection of S100B triggered a glaucoma-like degeneration of retina and optic nerve as well as microglia activation after 14 days. The precise role of microglia in our intravitreal S100B model is still unclear. Hence, microglia were inhibited through minocycline. The aim is to investigate whether microglia have a significant influence on the degeneration process or whether they are only a side effect in the model studied here. Methods Minocycline was applied daily in rats by intraperitoneal injection using two different concentrations (13.5 mg/kg body weight, 25 mg/kg body weight). One day after treatment start, S100B or PBS was intravitreally injected in one eye per rat. The naïve groups received no injections. This resulted in a total of five groups (naïve n = 14, PBS n = 14, S100B n = 13, 13.5 mg/kg mino n = 15, 25 mg/kg mino n = 15). At day 14, electroretinogram measurements were performed, followed by immunofluorescence and label-free quantitative proteomics analysis. The focus of these investigations was on the survival of RGCs as well as their axons, the response of the microglia, and the identification of further pathological modes of action of S100B. Results The best signal transmission was detected via ERG in the 13.5 mg/kg mino group. The inhibition of the microglia protected optic nerve neurofilaments and decreased the negative impact of S100B on RGCs. However, the minocycline treatment could not trigger complete protection of RGCs. Furthermore, in retina and optic nerve, the minocycline treatment reduced the number and activity of S100B-triggered microglia in a concentration-dependent manner. Proteomics analysis showed that S100B application led to numerous metabolic functions and cellular stress, mainly an increased inflammatory response, glycolysis, and mitochondrial dysfunction, which caused oxidative stress in the retina. Importantly, the protective capability of lower dose of minocycline was unraveled by suppressing the apoptotic, inflammatory, and the altered metabolic processes caused by S100B insult in the retina. Conclusion Intravitreally injected S100B not only led to a pro-inflammatory microglial reaction, but also a mitochondrial and metabolic dysfunction. Also, these results suggest that an excessive microglial response may be a significant degenerative factor, but not the only trigger for increased cell death.


2008 ◽  
Vol 7 (4) ◽  
pp. 1750-1760 ◽  
Author(s):  
Sun Tae Kim ◽  
Sang Gon Kim ◽  
Young Hyun Kang ◽  
Yiming Wang ◽  
Jae-Yean Kim ◽  
...  

2020 ◽  
Vol 191 ◽  
pp. 110204
Author(s):  
Zhen Liu ◽  
Qin Fu ◽  
Shanlong Tang ◽  
Yanjiao Xie ◽  
Qingshi Meng ◽  
...  

1999 ◽  
Vol 146 (6) ◽  
pp. 1365-1374 ◽  
Author(s):  
H. Ueda ◽  
J.M. Levine ◽  
R.H. Miller ◽  
B.D. Trapp

Retinal ganglion cell axons and axonal electrical activity have been considered essential for migration, proliferation, and survival of oligodendrocyte lineage cells in the optic nerve. To define axonal requirements during oligodendrogenesis, the developmental appearance of oligodendrocyte progenitors and oligodendrocytes were compared between normal and transected optic nerves. In the absence of viable axons, oligodendrocyte precursors migrated along the length of the nerve and subsequently multiplied and differentiated into myelin basic protein–positive oligodendrocytes at similar densities and with similar temporal and spatial patterns as in control nerves. Since transected optic nerves failed to grow radially, the number of oligodendrocyte lineage cells was reduced compared with control nerves. However, the mitotic indices of progenitors and the percentage of oligodendrocytes undergoing programmed cell death were similar in control and transected optic nerves. Oligodendrocytes lacked their normal longitudinal orientation, developed fewer, shorter processes, and failed to form myelin in the transected nerves. These data indicate that normal densities of oligodendrocytes can develop in the absence of viable retinal ganglion axons, and support the possibility that axons assure their own myelination by regulating the number of myelin internodes formed by individual oligodendrocytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-Reng Lin ◽  
Chao-Jen Kuo ◽  
Hugo You-Hsien Lin ◽  
Chin-Jen Wu ◽  
Shih-Shin Liang

We synthesized unmodified Fe3O4nanoparticles (NPs) with particles size from 10 nm to 100 nm. We cultured NRK-52E cell lines (rat, kidney) and treated with Fe3O4NPs to investigate and evaluate the cytotoxicity of NPs for NRK-52E cells. Through global proteomics analysis using dimethyl labeling techniques and liquid phase chromatography coupled with a tandem mass spectrometer (LC-MS/MS), we characterized 435 proteins including the programmed cell death related proteins, ras-related proteins, glutathione related proteins, and the chaperone proteins such as heat shock proteins, serpin H1, protein disulfide-isomerase A4, endoplasmin, and endoplasmic reticulum resident proteins. From the statistical data of identified proteins, we believed that NPs treatment causes cell death and promotes expression of ras-related proteins. In order to avoid apoptosis, NRK-52E cell lines induce a series of protective effects such as glutathione related proteins to reduce reactive oxygen species (ROS), and chaperone proteins to recycle damaged proteins. We suggested that, in the indigenous cellular environment, Fe3O4NPs treatment induced an antagonistic effect for cell lines to go to which avoids apoptosis.


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Sign in / Sign up

Export Citation Format

Share Document