scholarly journals Label free serum albumin nanoparticles for bioimaging and Trojan horse like drug delivery

Author(s):  
Bamadeb Patra ◽  
Ashok Kumar Mishra ◽  
Rama Shanker Verma
2019 ◽  
Vol 54 (11) ◽  
pp. 8613-8626 ◽  
Author(s):  
Danfeng Wang ◽  
Na Liang ◽  
Yoshiaki Kawashima ◽  
Fude Cui ◽  
Pengfei Yan ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Xue Shen ◽  
Xiyang Liu ◽  
Tingting Li ◽  
Yin Chen ◽  
Yang Chen ◽  
...  

Recently, drug delivery vehicles based on nanotechnology have significantly attracted the attention of researchers in the field of nanomedicine since they can achieve ideal drug release and biodistribution. Among the various organic or inorganic materials that used to prepare drug delivery vehicles for effective cancer treatment, serum albumin-based nanovehicles have been widely developed and investigated due to their prominent superiorities, including good biocompatibility, high stability, nontoxicity, non-immunogenicity, easy preparation, and functionalization, allowing them to be promising candidates for cancer diagnosis and therapy. This article reviews the recent advances on the applications of serum albumin-based nanovehicles in cancer diagnosis and therapy. We first introduce the essential information of bovine serum albumin (BSA) and human serum albumin (HSA), and discuss their drug loading strategies. We then discuss the different types of serum albumin-based nanovehicles including albumin nanoparticles, surface-functionalized albumin nanoparticles, and albumin nanocomplexes. Moreover, after briefly discussing the application of serum albumin-based nanovehicles used as the nanoprobes in cancer diagnosis, we also describe the serum albumin-based nanovehicle-assisted cancer theranostics, involving gas therapy, chemodynamic therapy (CDT), phototherapy (PTT/PDT), sonodynamic therapy (SDT), and other therapies as well as cancer imaging. Numerous studies cited in our review show that serum albumin-based nanovehicles possess a great potential in cancer diagnostic and therapeutic applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0254305
Author(s):  
Nikita Lomis ◽  
Susan Westfall ◽  
Dominique Shum-Tim ◽  
Satya Prakash

Congestive heart failure, a prominent cardiovascular disease results primarily from myocardial infarction or ischemia. Milrinone (MRN), a widely used clinical drug for heart failure, improves myocardial contractility and cardiac function through its inotropic and vasodilatory effects. However, lacking target specificity, it exhibits low bioavailability and lower body retention time. Therefore, in this study, angiotensin II (AT1) peptide conjugated human serum albumin nanoparticles (AT1-HSA-MRN-NPs) have been synthesized for targeted delivery of MRN to the myocardium, overexpressing AT1 receptors under heart failure. The NPs were surface functionalized through a covalent conjugation reaction between HSA and AT1. Nanoparticle size was 215.2±4.7 nm and zeta potential -28.8±2.7 mV and cumulative release of MRN was ~72% over 24 hrs. The intracellular uptake of nanoparticles and cell viability was studied in H9c2 cells treated with AT1-MRN-HSA-NPs vs the control non-targeted drug, MRN Lactate under normal, hypoxic and hypertrophic conditions. The uptake of AT1-HSA-MRN-NPs in H9c2 cells was significantly higher as compared to non-targeted nanoparticles, and the viability of H9c2 cells treated with AT1-MRN-HSA-NPs vs MRN Lactate was 73.4±1.4% vs 44.9±1.4%, respectively. Therefore, AT1-HSA-MRN-NPs are safe for in vivo use and exhibit superior targeting and drug delivery characteristics for treatment of heart failure.


2021 ◽  
Author(s):  
Satya Prakash ◽  
Nikita Lomis ◽  
Susan Westfall ◽  
Dominique Shum-Tim

Congestive heart failure, a prominent cardiovascular disease results primarily from myocardial infarction or ischemia. Milrinone (MRN), a widely used clinical drug for heart failure, improves myocardial contractility and cardiac function through its inotropic and vasodilatory effects. However, lacking target specificty, it exhibits low bioavailability and lower body retention time. Therefore, in this study, angiotensin II (AT1) peptide conjugated human serum albumin nanoparticles (AT1-HSA-MRN-NPs) have been synthesized for targeted delivery of MRN to the myocardium, overexpressing AT1 receptors under heart failure. The NPs were surface functionalized through a covalent conjugation reaction between HSA and AT1. Nanoparticle size was 215.2±4.7 nm and zeta potential -28.8±2.7 mV and cumulative release of MRN was ~72% over 24 hrs. The intracellular uptake of nanoparticles and cell viability was studied in H9c2 cells treated with AT1-MRN-HSA-NPs vs the control non-targeted drug, MRN Lactate under normal, hypoxic and hypertrophic conditions. The uptake of AT1-HSA-MRN-NPs in H9c2 cells was significantly higher as compared to non-targeted nanoparticles, and the viability of H9c2 cells treated with AT1-MRN-HSA-NPs vs MRN Lactate was 73.4±1.4% vs 44.9±1.4%, respectively. Therefore, AT1-HSA-MRN-NPs are safe for in vivo use and exhibit superior targeting and drug delivery characteristics for treatment of heart failure.


2021 ◽  
Vol 28 ◽  
Author(s):  
Zhenyu Chen ◽  
Zhongling Luo ◽  
Jiayao Lyu ◽  
Jianxin Wang ◽  
Zhongbing Liu ◽  
...  

Background: Methotrexate (MTX) is the representative drug among the disease-modifying anti-rheumatic drugs. But the conventional treatment with MTX showed many limitations and side effects. Objective: To strengthen the targeting ability and circulation time of MTX in the treatment of rheumatoid arthritis, the present study focused on developing a novel drug delivery system of methotrexate-loaded human serum albumin nanoparticles (MTX-NPs) modified by mannose, which referred as MTX-M-NPs. Methods: Firstly, mannose-derived carboxylic acid was synthesized and further modified on the surface of MTX-NPs to prepare MTX-M-NPs. The formulation of nanoparticles was optimized by method of central composite design (CCD), with the drug lipid ratio, oil-aqueous ratio, and cholesterol or lecithin weight as the independent variables. The average particle size and encapsulation efficiency were the response variables. Response of different formulations was calculated and the response surface diagram, contour diagram and mathematical equation were used to relate the dependent and independent variables to predict the optimal formula ratio. The uptake of MTX-M-NPs by neutrophils was studied through the laser confocal detection. Further, MTX-M-NPs was subjected to assess the pharmacokinetics profile after intravenous injection with Sprague-Dawley rats. Results: This targeting drug delivery system was successfully developed. Results from Nuclear Magnetic Resonance and Fourier Transform Infrared Spectroscopy analysis can verify the successful preparation of this drug delivery system. Based on the optimized formula, MTX-M-NPs was prepared with a particle size of 188.17 ± 1.71 nm and an encapsulation rate of 95.55 ± 0.33%. MTX-M-NPs displayed significantly higher cellular uptake than MTX-NPs. The pharmacokinetic results showed that MTX-M-NPs could prolong the in vivo circulation time of MTX. Conclusion: This targeting drug delivery system laid a promising foundation for the treatment of RA.


Sign in / Sign up

Export Citation Format

Share Document