U–Pb LA-ICP-MS geochronology of detrital zircon grains from low-grade metasedimentary rocks (Neoproterozoic – Cambrian) of the Mojotoro Range, northwest Argentina

2014 ◽  
Vol 49 ◽  
pp. 39-50 ◽  
Author(s):  
Pamela A. Aparicio González ◽  
Márcio M. Pimentel ◽  
Natalia Hauser ◽  
M. Cristina Moya
2016 ◽  
Vol 43 (1) ◽  
pp. 137 ◽  
Author(s):  
Juan A. Dahlquist ◽  
Sebastián O. Verdecchia ◽  
Edgardo G. Baldo ◽  
Miguel A.S. Basei ◽  
Pablo H. Alasino ◽  
...  

An Early Cambrian pluton, known as the Guasayán pluton, has been identified in the central area of Sierra de Guasayán, northwestern Argentina. A U-Pb zircon Concordia age of 533±4 Ma was obtained by LA-MC-ICP-MS and represents the first report of robustly dated Early Cambrian magmatism for the northwestern Sierras Pampeanas. The pluton was emplaced in low-grade metasedimentary rocks and its magmatic assemblage consists of K-feldspar (phenocrysts)+plagioclase+quartz+biotite, with zircon, apatite, ilmenite, magnetite and monazite as accessory minerals. Geochemically, the granitic rock is a metaluminous subalkaline felsic granodiorite with SiO2=69.24%, Na2O+K2O=7.08%, CaO=2.45%, Na2O/ K2O=0.71 and FeO/MgO=3.58%. Rare earth element patterns show moderate slope (LaN/YbN=8.05) with a slightly negative Eu anomalies (Eu/Eu*=0.76). We report the first in situ Hf isotopes data (εHft=-0.12 to -4.76) from crystallized zircons in the Early Cambrian granites of the Sierras Pampeanas, helping to constrain the magma source and enabling comparison with other Pampean granites. The Guasayán pluton might provide a link between Early Cambrian magmatism of the central Sierras Pampeanas and that of the Eastern Cordillera, contributing to define the western boundary of the Pampean paleo-arc.


2011 ◽  
Vol 62 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Ion Balintoni ◽  
Constantin Balica ◽  
Antoneta Seghedi ◽  
Mihai Ducea

Peri-Amazonian provenance of the Central Dobrogea terrane (Romania) attested by U/Pb detrital zircon age patterns The Central Dobrogea Shield is a part of the Moesia, a Paleozoic composite terrane located southward of the North Dobrogea Alpine orogen. The two geological units are separated from each other by a trans-lithospheric discontinuity, the Peceneaga-Camena transform fault. Along this fault, remnants of a Variscan orogen (i.e. North Dobrogea), recycled during the Alpine orogeny come in contact with two lithological entities of the Central Dobrogea Shield, unaffected by the Phanerozoic orogenic events: the Histria Formation, a flysch-like sequence of Ediacaran age very low-grade metamorphosed and its basement, the medium-grade metamorphosed Altîn Tepe sequence. Southward, along the reverse hidden Palazu fault, the Histria Formation meets South Dobrogea, formed of quite different geological formations. Detrital zircon from the Histria Formation yielded U/Pb LA ICP MS ages that show provenance patterns typical of peri-Amazonian terranes. Such terranes were sourced by orogens ranging from Paleoarchean to Neoproterozoic. The ages between 750 and 600 Ma differentiate the Amazonian sources from the Baltican and Laurentian sources, since they are lacking from the last ones. The youngest ages of 587 and 584 Ma suggest for the Histria Formation a maximum late Ediacaran deposition age. At the same time, the continuity of the Ordovician sediments over the Palazu fault revealed by drill-cores favours a Cambrian junction between Central and South Dobrogea.


2021 ◽  
Author(s):  
Allison Severson ◽  
et al.

U-Pb LA-ICP-MS detrital zircon data for three samples collected along the western boundary of the Avalon terrane in southeastern New England


Author(s):  
S. Siegesmund ◽  
S. Oriolo ◽  
B. Schulz ◽  
T. Heinrichs ◽  
M. A. S. Basei ◽  
...  

AbstractNew whole-rock geochemical and coupled U–Pb and Lu–Hf LA-ICP-MS zircon data of metasedimentary rocks of the Austroalpine, South Alpine and Penninic basement domains are presented, to disentangle the pre-Variscan tectonic evolution of the proto-Alps. The studied units seem to record distinct stages of protracted Late Ediacaran to Carboniferous tectonosedimentary processes prior to the Variscan collision. In the case of Austroalpine and South Alpine units, nevertheless, no major differences in terms of provenance are observed, since most detrital zircon samples are characterized by a major Pan-African peak. Their detrital zircon spectra record a provenance from the northeastern Saharan Metacraton and the Sinai basement at the northern Arabian-Nubian Shield, being thus located along the eastern Early Paleozoic northern Gondwana margin, whereas sources located further west are inferred for the Penninic Unit, which might have been placed close to the Moldanubian Unit of the Bohemian Massif. In any case, it is thus clear that the Alpine basement remained in a close position to the Gondwana mainland at least during the Early Paleozoic. The Late Ediacaran to Silurian tectonic evolution, which includes Cadomian and Cenerian tectonometamorphic and magmatic processes, seem thus to record a continuum related to a retreating-mode accretionary orogen, with diachronous back-arc basin opening and possibly discrete compressional/transpressional pulses linked to changes in subduction zone dynamics. On the other hand, it is inferred that the Alpine basement essentially comprises Pan-African metasedimentary and subordinate metaigneous rocks, possibly with very few Early Neoproterozoic relics. This basement was significantly reworked during the protracted Paleozoic orogenic evolution, due to anatexis and/or assimilation by mantle-derived juvenile magmatism.


2020 ◽  
Author(s):  
Jonas Vanardois ◽  
Pierre Trap ◽  
Françoise Roger ◽  
Fabrice Barou ◽  
Pierre Lanari ◽  
...  

<p>                The Aiguilles-Rouge Massif (ARM) is one of the Western External Crystallin Massifs (ECM) of the French Alps. Similarly to the other ECMs, the ARM exposes a Variscan basement made of migmatitic ortho- and paragneisses and micaschists that hold metric boudins of retrograded eclogites, amphibolites and serpentinites. Upward, low-grade and weakly metamorphosed Late-Carboniferous terrigenous sediments overly the Variscan basement. Deformation and metamorphism occurred between 330 and 300 Ma. The whole ARM is structured by a main N-S to NE-SW trending and vertical foliation formed in response to a regional dextral transpression. The tectonic significance of the ARM’s high-pressure rocks in the Variscan belt realm as relics of a subduction zone, pieces of crustal root of an orogenic plateau or overpressure phenomenon along a high-strain zone is still highly debated. A question that also remains is how eclogite Pressure–Temperature–time-Deformation history (P–T–t-D path) relates to the metamorphic paths recorded in the surrounding migmatitic rocks. In this contribution we present new structural and microstructural (EBSD data) observations that give us a detailed vision of the partitioning of the crustal scale deformation during Late-Variscan time. Three main deformations, named D1, D2 and D3, have been recognized in the gneissic core of the ARM. D1 is relictual and corresponds to a flat-lying S1 foliation that is only visible in the high grade metasedimentary rocks and preserved in low-D2 strain domains. D1 is associated with a partial melting metamorphic event M1. D2 is characterized by three main orientations of planar fabrics that are oriented in directions N160, N0 and N20. These planar fabrics are interpreted as S2-C2-C2’ related to anastomosed system developed under a bulk dextral transpression. D2 shearing becomes more penetrative toward the NE, where it is associated to local partial melting. D3 corresponds to the development of a flat-lying S3 cleavage together with the folding of vertical D2 foliations. The D3 is linked to a regional vertical shortening, associated to few liquid injections. These partial melting conditions occurring during D1, D2 and D3 deformations may unravel a continuum of these three deformations during a short period of time. Processing of new thermobarometric and LA-ICP-MS U-Pb geochronological data on eclogites, surrounding rocks and migmatites are currently in progress. The new obtained results will be presented in addition to the structural and metamorphic data in order to discuss the P-T-t-D path of the deeply buried metasedimentary rocks, migmatites and preserved eclogites.</p>


2021 ◽  
Author(s):  
Allison Severson ◽  
et al.

U-Pb LA-ICP-MS detrital zircon data for three samples collected along the western boundary of the Avalon terrane in southeastern New England


2014 ◽  
Vol 41 (4) ◽  
pp. 503 ◽  
Author(s):  
K. Stephen Hughes ◽  
James P. Hibbard ◽  
Jeffrey C. Pollock ◽  
David J. Lewis ◽  
Brent V. Miller

The Chopawamsic fault potentially represents the main Iapetan suture, previously unidentified in the southern extent of the Appalachian orogen.  The fault trends through the north-central portion of the western Piedmont of Virginia and separates the composite metaclastic Potomac terrane, commonly interpreted to be of Laurentian affinity, from the Chopawamsic terrane, the remains of a Middle Ordovician volcanic arc of uncertain crustal affinity.  To gain insight on the first-order orogenic significance of the Chopawamsic fault, we report the results of LA–ICP–MS U–Pb analyses of 1,289 detrital zircons from 13 metasedimentary rock samples collected from both sides of the fault.       The near exclusivity of Middle Ordovician zircon grains (ca. 470 – 460 Ma) in four sampled metasedimentary rocks of the Chopawamsic Formation likely represents the detrital recycling of syndepositional Chopawamsic volcanic rocks.  A subset of Cambrian and older grains hint at one or more additional, older sources.       Samples from the Potomac terrane include mostly Mesoproterozoic zircon grains and these results are consistent with previous interpretations that the metaclastic rocks are Laurentian-derived.  The youngest zircons (ca. 550 – 500 Ma) and the age of cross-cutting plutons indicate that at least some parts of the Potomac terrane are Late Cambrian – Early Ordovician.  The results imply temporally discrete and geographically isolated sedimentary systems during deposition of sedimentary rocks in the Chopawamsic and Potomac terranes.       Metasedimentary rocks near Storck, Virginia, previously identified as a successor basin, contain detrital zircon populations that indicate they are actually peri-Gondwanan derived metasedimentary rocks unrelated to a successor basin system; their geographic position between the Laurentian-derived Potomac terrane and the Chopawamsic terrane suggests a peri-Gondwanan affinity for the Chopawamsic arc and geographic separation of the Chopawamsic and Potomac terranes in the Middle Ordovician. Consequently, we tentatively support the hypothesis that the Chopawamsic fault system represents the main Iapetan suture in the southern Appalachian orogen.      Most detrital zircons from samples of the Arvonia successor basin crystallized in the Ordovician—Silurian or Mesoproterozoic.  These data suggest that the Arvonia basin was deposited in the latest Ordovician to Early Silurian only after the Late Ordovician accretion of the Chopawamsic arc to Laurentia.  SOMMAIRELa faille de Chopawamsic représente peut-être la principale suture japétienne, non-reconnue dans prolongement sud de l’orogène des Appalaches.  La faille traverse la portion nord du centre du piedmont ouest de Virginie et sépare le terrane métaclastique de Potomac, d’affinité laurentienne pensait-on, du terrane de Chopawamsic, vestige d’un arc volcanique de l’Ordovicien moyen d’affinité crustale incertain.  Afin de mettre en lumière la signification orogénique première de la faille de Chopawamsic, nous présentons les résultats d’analyses U-Pb par ICP–MS par AL sur 1 289 zircons détritiques provenant de 13 échantillons de roches métasédimentaires prélevés de chaque côté de la faille.     L’existence quasi-exclusive de grains de zircon de l’Ordovicien moyen (env. 470 – 460 Ma) dans quatre roches métasédimentaires de la Formation de Chopawamsic représente vraisemblablement le recyclage détritique des roches volcaniques synsédimentaires de Chopawamsic.  Un sous-ensemble de grains cambriens et plus anciens, évoque l’existence d’une ou plusieurs sources plus anciennes additionnelles.     Les échantillons du terrane de Potomac renferment principalement des grains de zircon du Mésoprotérozoïque, ce qui correspond avec les interprétations antérieures voulant que les roches métaclastiques soient d’origine laurentienne.  Les zircons les plus jeunes (env. 550 – 500 Ma) ainsi que l’âge des plutons qui recoupe l’encaissant indiquent qu’au moins certaines parties du terrane de Potomac sont de la fin du Cambrien ou du début de l’Ordovicien.  Les résultats impliquent l’existence de systèmes sédimentaires distincts au cours du temps, et isolés géographiquement durant le dépôt des roches sédimentaires dans les terranes de Chopawamsic et de Potomac.     Les roches métasédimentaires près de Storck en Virginie, jadis interprétées comme bassin successeur, renferment des populations de zircons détritiques qui indiquent qu’ils proviennent en fait de roches métasédimentaires péri-gondwaniennes sans rapport avec un système de bassin successeur; leur localisation géographique entre le terrane de Potomac issu des Laurentides et le terrane de Chopawamsic porte à penser que l’arc de Chopawamsic est d’affinité péri-gondwanienne, et que les terranes de Chopawamsic et de Potomac à l’Ordovicien moyen étaient séparés géographiquement.   En conséquence il nous semble justifié de proposer que le système de faille de Chopawamsic représente la principale suture japétienne dans le sud de l’orogène des Appalaches.     La plupart des zircons détritiques des échantillons du bassin successeur d’Arvonia ont cristallisés entre l’Ordovicien et le Silurien ou au Mésoprotérozoïque.  Ces données suggèrent que le bassin d’Arvonia s’est rempli de la fin entre l’Ordovicien et le début du Silurien, seulement après l’accrétion de l’arc de Chopawamsic à la Laurentie, à la fin de l’Ordovicien.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 637
Author(s):  
Aaron L. Bustard ◽  
Wei Zhang ◽  
David R. Lentz ◽  
Christopher R. M. McFarlane

The Sisson Brook deposit is a low-grade, large-tonnage W-Mo deposit with notable Cu located in west-central New Brunswick, Canada, and is one of several W-Mo deposits in New Brunswick associated with fluids sourced from granitic plutons emplaced during the Devonian Acadian Orogeny. The younger Devonian-aged stockwork and replacement scheelite-wolframite-molybdenite (and chalcopyrite) mineralization straddles the faulted boundary between Cambro-Ordovician metasedimentary rocks with Ordovician felsic volcaniclastic rocks and the Middle Silurian Howard Peak Granodiorite, with dioritic and gabbroic phases. U-Pb dating of magmatic titanite in the host dioritic phase of the Howard Peak Granodiorite using LA ICP-MS resulted in a 204Pb-corrected concordant age of 432.1 ± 1.9 Ma. Petrologic examination of selected mineralization combined with elemental mapping of vein selvages using micro-XRF and metasomatic titanite and ilmenite grains using LA ICP-MS indicates that saturation of titaniferous phases influenced the distribution of scheelite versus wolframite mineralization by altering the aFe/aCa ratio in mineralizing fluids. Ilmenite saturation in Ti-rich host rocks lowered the relative aFe/aCa and led to the formation of scheelite over wolframite. Altered magmatic titanite and hydrothermal titanite also show increased W and Mo concentrations due to interaction with and/or saturation from mineralizing fluids.


Sign in / Sign up

Export Citation Format

Share Document