The DNA-binding mechanism of the TCS response regulator ArlR from Staphylococcus aureus

2019 ◽  
Vol 208 (3) ◽  
pp. 107388 ◽  
Author(s):  
Hui Yan ◽  
Qing Wang ◽  
Maikun Teng ◽  
Xu Li
2019 ◽  
Vol 47 (21) ◽  
pp. 11418-11429 ◽  
Author(s):  
Zhenlin Ouyang ◽  
Fang Zheng ◽  
Jared Y Chew ◽  
Yingmei Pei ◽  
Jinhong Zhou ◽  
...  

Abstract Staphylococcus aureus ArlRS is a key two-component regulatory system necessary for adhesion, biofilm formation, and virulence. The response regulator ArlR consists of a C-terminal DNA-binding effector domain and an N-terminal receiver domain that is phosphorylated by ArlS, the cognate transmembrane sensor histidine kinase. We demonstrate that the receiver domain of ArlR adopts the canonical α5β5 response regulator assembly, which dimerizes upon activation, using beryllium trifluoride as an aspartate phosphorylation mimic. Activated ArlR recognizes a 20-bp imperfect inverted repeat sequence in the ica operon, which is involved in intercellular adhesion polysaccharide production. Crystal structures of the inactive and activated forms reveal that activation induces a significant conformational change in the β4-α4 and β5-α5-connecting loops, in which the α4 and α5 helices constitute the homodimerization interface. Crystal structures of the DNA-binding ArlR effector domain indicate that it is able to dimerize via a non-canonical β1–β2 hairpin domain swapping, raising the possibility of a new mechanism for signal transduction from the receiver domain to effector domain. Taken together, the current study provides structural insights into the activation of ArlR and its recognition, adding to the diversity of response regulation mechanisms that may inspire novel antimicrobial strategies specifically targeting Staphylococcus.


2016 ◽  
Vol 36 (2) ◽  
Author(s):  
Stefan Behr ◽  
Ralf Heermann ◽  
Kirsten Jung

A combination of surface plasmon resonance (SPR) spectroscopy and interaction map® (IM) analysis was used to characterize binding of the LytTR-type response regulator YpdB to promoter DNA. YpdB follows an ‘AB-BA’ mechanism involving sequential and cooperative DNA binding followed by rapid successive promoter clearance.


2010 ◽  
Vol 192 (8) ◽  
pp. 2111-2127 ◽  
Author(s):  
Fei Sun ◽  
Chunling Li ◽  
Dowon Jeong ◽  
Changmo Sohn ◽  
Chuan He ◽  
...  

ABSTRACT Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length SaeR could be restored by sensor kinase SaeS-induced phosphorylation. Phosphorylated SaeR is more resistant to digestion by trypsin, suggesting conformational changes. DNase I footprinting assays revealed that the SaeR protection region in the P1 promoter contains a direct repeat sequence (GTTAAN6GTTAA [where N is any nucleotide]). This sequence is critical to the binding of phosphorylated SaeR. Mutational changes in the repeat sequence greatly reduced both the in vitro binding of SaeR and the in vivo function of the P1 promoter. From these results, we concluded that SaeR recognizes the direct repeat sequence as a binding site and that binding requires phosphorylation by SaeS.


2018 ◽  
Vol 430 (6) ◽  
pp. 806-821 ◽  
Author(s):  
G. Logan Draughn ◽  
Morgan E. Milton ◽  
Erik A. Feldmann ◽  
Benjamin G. Bobay ◽  
Braden M. Roth ◽  
...  

FEBS Journal ◽  
2016 ◽  
Vol 283 (7) ◽  
pp. 1286-1299 ◽  
Author(s):  
Atul Vashist ◽  
D. Prithvi Raj ◽  
Umesh Datta Gupta ◽  
Rajiv Bhat ◽  
Jaya Sivaswami Tyagi

2008 ◽  
Vol 190 (21) ◽  
pp. 7241-7250 ◽  
Author(s):  
Lina Li ◽  
David M. Kehoe

ABSTRACT RcaC is a large, complex response regulator that controls transcriptional responses to changes in ambient light color in the cyanobacterium Fremyella diplosiphon. The regulation of RcaC activity has been shown previously to require aspartate 51 and histidine 316, which appear to be phosphorylation sites that control the DNA binding activity of RcaC. All available data suggest that during growth in red light, RcaC is phosphorylated and has relatively high DNA binding activity, while during growth in green light RcaC is not phosphorylated and has less DNA binding activity. RcaC has also been found to be approximately sixfold more abundant in red light than in green light. Here we demonstrate that the light-controlled abundance changes of RcaC are necessary, but not sufficient, to direct normal light color responses. RcaC abundance changes are regulated at both the RNA and protein levels. The RcaC protein is significantly less stable in green light than in red light, suggesting that the abundance of this response regulator is controlled at least in part by light color-dependent proteolysis. We provide evidence that the regulation of RcaC abundance does not depend on any RcaC-controlled process but rather depends on the presence of the aspartate 51 and histidine 316 residues that have previously been shown to control the activity of this protein. We propose that the combination of RcaC abundance changes and modification of RcaC by phosphorylation may be necessary to provide the dynamic range required for transcriptional control of RcaC-regulated genes.


2018 ◽  
Vol 19 (10) ◽  
pp. 2872 ◽  
Author(s):  
Monika Janczarek ◽  
José-María Vinardell ◽  
Paulina Lipa ◽  
Magdalena Karaś

Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.


Sign in / Sign up

Export Citation Format

Share Document