High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton

2016 ◽  
Vol 118 ◽  
pp. 1-10 ◽  
Author(s):  
Guangzheng Jiang ◽  
Xiaoyin Tang ◽  
Song Rao ◽  
Peng Gao ◽  
Linyou Zhang ◽  
...  
Lithos ◽  
2018 ◽  
Vol 304-307 ◽  
pp. 489-500 ◽  
Author(s):  
Shuo Xue ◽  
Yang Xu ◽  
Ming-Xing Ling ◽  
Qing-Qing Kang ◽  
Xiao-Yan Jiang ◽  
...  

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.


2020 ◽  
Author(s):  
Huiru Xu ◽  
Tao Yang ◽  
Mark Dekkers ◽  
Peng Peng ◽  
Kunpeng Ge ◽  
...  

<p>The paleo-position of the North China Craton (NCC) within the Supercontinent Nuna/Columbia is controversial. Hindered by ubiquitous alteration of the very ancient rocks, paleomagnetic studies have not been able yet to conclusively solve this puzzle. Comprehensive analysis on the relatively limited Precambrian records is essential to understand the geological history of these cratons. Within the NCC, the tectonic setting of a ~1.78 Ga large igneous province (LIP) is long debated. It is considered to be related to a paleoplume, post-collision extension, or an Andean continental margin. Knowing its mode of formation constrains the geological evolution of the NCC and its paleo-position within the Supercontinent Nuna/Columbia. Here we conduct a study into the anisotropy of magnetic susceptibility (AMS) in the dykes and lavas of the ~1.78 Ga LIP, together with systematic rock magnetic experiments, to constrain the geological background of the igneous event(s), to understand the tectonic evolution of the NCC, as well as its paleo-position within the assembly of the Nuna/Columbia supercontinent.</p><p>Thirty-three dykes in the northern and middle parts and thirty lavas in the southern part of the NCC were collected. Detailed rock magnetic analyses indicate PSD magnetite to be the dominant magnetic mineral in the samples, occasionally with pyrrhotite in the dykes and hematite in the lavas. The often observed relatively weak anisotropy degree suggests that the AMS ellipsoids probably portray magma flow-related fabrics. The inferred directions from the AMS fabrics of the lavas reveal a radial flow pattern with an eruption center located on the south margin of the NCC. The studied dykes show a predominance of horizontally to subhorizontally northward magma flow, with only few vertical intrusions. These observations imply that the ~1.78 Ga LIP may have formed by magma source(s) at the south margin of the NCC. Some localized magma sub-chambers may have formed during the propagation of the magma and could have been responsible for the less common vertically intruded dykes and the EW-trending dykes. Therefore, we favor a plume-related tectonic setting for the ~1.78 Ga LIP with the eruption center along the margin of the NCC. It can serve as an essential criterion to search for possible neighbour(s) of the NCC within Nuna/Columbia, which should preserve the relics of the ~1.78 Ga LIP. Our study, in combination with extant geological and paleomagnetic results suggests a close linkage of the NCC with the São Francisco-Congo, Rio de la Plata and Siberia cratons in the Nuna/Columbia supercontinent.</p>


Sign in / Sign up

Export Citation Format

Share Document