Deformation history of a subducted continental crust (Gran Paradiso, Western Alps): continuing crustal shortening during exhumation

2006 ◽  
Vol 28 (5) ◽  
pp. 793-815 ◽  
Author(s):  
Benjamin Le Bayon ◽  
Michel Ballèvre
1982 ◽  
Vol 119 (3) ◽  
pp. 301-308 ◽  
Author(s):  
J. R. Vearncombe

SummaryThe interrelationships of dolomite, anhydrite, gypsum and cargneule (a yellow-brown dedolomitised breccia), are discussed with specific reference to the Gran Paradiso region, Western Alps. The dolomite is a highly deformed rock which occurs along the soles of both early and late-Alpine thrusts. Evidence suggests that cargneule formed late in the geological history of the region. It is suggested that dolomite + anhydrite + water acted as an important decollement horizon. Recent exposure to the surface, hydration of anhydrite to gypsum and dedolomitisation resulted in cargneule formation.


2001 ◽  
Vol 34 (1) ◽  
pp. 329 ◽  
Author(s):  
U. RING

Astypalea Island lies south of the Late Cretaceous to Eocene high-pressure belt of the Cyclades and north of the Miocene high-pressure belt of the External Hellenides. The rocks of the island belong to the Tripolitza unit. The latter unit occupies a critical tectonic position in Astypalea between the unmetamorphosed Tripolitza rocks in Crete and the high-pressure Basal unit, which is correlated to the Tripolitza unit, in the Cyclades. We have subdivided the deformation history of Astypalea Island into four events, D; through D4. The problem with interpreting the structural data is that the Di and D2 events cannot unequivocally be ascribed to horizontal crustal contraction or crustal shortening. In our interpretation, Dt caused top-S internal imbrication within the Tripolitza unit as a result of crustal shortening. We envision that this event occurred when the Phyllite-Quartzite and Plattenkalk units were underthrust beneath the Tripolitza unit in the Oligocene. D was probably associated with top-N extension and may be related to large-scale crustal extension across the Cretan detachment in the Early Miocene. D3 caused high-angle faulting due to E-W contraction and D4 was due to N-S extension.


Author(s):  
J. A. N. Zasadzinski ◽  
R. K. Prud'homme

The rheological and mechanical properties of crosslinked polymer gels arise from the structure of the gel network. In turn, the structure of the gel network results from: thermodynamically determined interactions between the polymer chain segments, the interactions of the crosslinking metal ion with the polymer, and the deformation history of the network. Interpretations of mechanical and rheological measurements on polymer gels invariably begin with a conceptual model of,the microstructure of the gel network derived from polymer kinetic theory. In the present work, we use freeze-etch replication TEM to image the polymer network morphology of titanium crosslinked hydroxypropyl guars in an attempt to directly relate macroscopic phenomena with network structure.


Author(s):  
Adam A. Garde ◽  
Brian Chadwick ◽  
John Grocott ◽  
Cees Swager

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., Chadwick, B., Grocott, J., & Swager, C. (1997). Metasedimentary rocks, intrusions and deformation history in the south-east part of the c. 1800 Ma Ketilidian orogen, South Greenland: Project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 60-65. https://doi.org/10.34194/ggub.v176.5063 _______________ The south-east part of the c. 1800 Ma Ketilidian orogen in South Greenland (Allaart, 1976) is dominated by strongly deformed and variably migmatised metasedimentary rocks known as the ‘Psammite and Pelite Zones’ (Chadwick & Garde, 1996); the sediments were mainly derived from the evolving Julianehåb batholith which dominates the central part of the orogen. The main purpose of the present contribution is to outline the deformational history of the Psammite Zone in the region between Lindenow Fjord and Kangerluluk (Fig. 2), investigated in 1994 and 1996 as part of the SUPRASYD project (Garde & Schønwandt, 1995 and references therein; Chadwick et al., in press). The Lindenow Fjord region has high alpine relief and extensive ice and glacier cover, and the fjords are regularly blocked by sea ice. Early studies of this part of the orogen were by boat reconnaissance (Andrews et al., 1971, 1973); extensive helicopter support in the summers of 1992 and 1994 made access to the inner fjord regions and nunataks possible for the first time.A preliminary geological map covering part of the area between Lindenow Fjord and Kangerluluk was published by Swager et al. (1995). Hamilton et al. (1996) have addressed the timing of sedimentation and deformation in the Psammite Zone by means of precise zircon U-Pb geochronology. However, major problems regarding the correlation of individual deformational events and their relationship with the evolution of the Julianehåb batholith were not resolved until the field work in 1996. The SUPRASYD field party in 1996 (Fig. 1) was based at the telestation of Prins Christian Sund some 50 km south of the working area (Fig. 2). In addition to base camp personnel, helicopter crew and the four authors, the party consisted of five geologists and M.Sc. students studying mafic igneous rocks and their mineralisation in selected areas (Stendal et al., 1997), and a geologist investigating rust zones and areas with known gold anomalies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aurélie Salavert ◽  
Antoine Zazzo ◽  
Lucie Martin ◽  
Ferran Antolín ◽  
Caroline Gauthier ◽  
...  

AbstractThis paper aims to define the first chrono-cultural framework on the domestication and early diffusion of the opium poppy using small-sized botanical remains from archaeological sites, opening the way to directly date minute short-lived botanical samples. We produced the initial set of radiocarbon dates directly from the opium poppy remains of eleven Neolithic sites (5900–3500 cal BCE) in the central and western Mediterranean, northwestern temperate Europe, and the western Alps. When possible, we also dated the macrobotanical remains originating from the same sediment sample. In total, 22 samples were taken into account, including 12 dates directly obtained from opium poppy remains. The radiocarbon chronology ranges from 5622 to 4050 cal BCE. The results show that opium poppy is present from at least the middle of the sixth millennium in the Mediterranean, where it possibly grew naturally and was cultivated by pioneer Neolithic communities. Its dispersal outside of its native area was early, being found west of the Rhine in 5300–5200 cal BCE. It was introduced to the western Alps around 5000–4800 cal BCE, becoming widespread from the second half of the fifth millennium. This research evidences different rhythms in the introduction of opium poppy in western Europe.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 135
Author(s):  
Aurélie Labeur ◽  
Nicolas E. Beaudoin ◽  
Olivier Lacombe ◽  
Laurent Emmanuel ◽  
Lorenzo Petracchini ◽  
...  

Unravelling the burial-deformation history of sedimentary rocks is prerequisite information to understand the regional tectonic, sedimentary, thermal, and fluid-flow evolution of foreland basins. We use a combination of microstructural analysis, stylolites paleopiezometry, and paleofluid geochemistry to reconstruct the burial-deformation history of the Meso-Cenozoic carbonate sequence of the Cingoli Anticline (Northern Apennines, central Italy). Four major sets of mesostructures were linked to the regional deformation sequence: (i) pre-folding foreland flexure/forebulge; (ii) fold-scale layer-parallel shortening under a N045 σ1; (iii) syn-folding curvature of which the variable trend between the north and the south of the anticline is consistent with the arcuate shape of the anticline; (iv) the late stage of fold tightening. The maximum depth experienced by the strata prior to contraction, up to 1850 m, was quantified by sedimentary stylolite paleopiezometry and projected on the reconstructed burial curve to assess the timing of the contraction. As isotope geochemistry points towards fluid precipitation at thermal equilibrium, the carbonate clumped isotope thermometry (Δ47) considered for each fracture set yields the absolute timing of the development and exhumation of the Cingoli Anticline: layer-parallel shortening occurred from ~6.3 to 5.8 Ma, followed by fold growth that lasted from ~5.8 to 3.9 Ma.


Sign in / Sign up

Export Citation Format

Share Document