WITHDRAWN: Decreased membrane-type 1 matrix metalloproteinase in gastric cancer suppressed cell migration and invasion via regulating matrix metalloproteinases and epithelial–mesenchymal transition

Author(s):  
Li Cheng ◽  
Yi Ding ◽  
Hongxing Jiang
2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tonglei Xu ◽  
Fangliang Xie ◽  
Dazhou Xu ◽  
Weidong Xu ◽  
Xuming Ge ◽  
...  

Purpose. Accumulating evidence indicates that miRNAs (miRs) play crucial roles in the modulation of tumors development. However, the accurately mechanisms have not been entirely clarified. In this study, we aimed to explore the role of miR-200b in the development of gastric cancer (GC). Methods. Western blot and RT-PCR were applied to detect epithelial-mesenchymal transition (EMT) marker expression and mRNA expression. Transwell assay was used for measuring the metastasis and invasiveness of GC cells. TargetScan system, luciferase reporter assay, and rescue experiments were applied for validating the direct target of miR-200b. Results. MiR-200b was prominently decreased in GC tissues and cells, and its downregulation was an indicator of poor prognosis of GC patients. Reexpression of miR-200b suppressed EMT along with GC cell migration and invasion. Neuregulin 1 (NRG1) was validated as the target of miR-200b, and it rescued miR-200b inhibitory effect on GC progression. In GC tissues, the correlation of miR-200b with NRG1 was inverse. Conclusion. MiR-200b suppressed EMT-related migration and invasion of GC through the ERBB2/ERBB3 signaling pathway via targeting NRG1.


Author(s):  
Jye-Yu Huang ◽  
Shu-Fen Peng ◽  
Fu-Shin Chueh ◽  
Po-Yuan Chen ◽  
Yi-Ping Huang ◽  
...  

ABSTRACT Gastric cancer has a poor prognosis; once cancer has metastasized, it can easily lead to patient death. Melittin is one of the major components extracted from the bee venom. It has been shown that melittin emerges antitumor activities against many human cancer cell lines. Our results indicated that melittin at 0.2-0.5 µm significantly reduced total cell viability in human gastric cancer AGS cells. At low concentrations (0.05-0.15 µm), melittin displayed antimetastasis effects and inhibited cell adhesion and colony formation. Besides, it inhibited cell motility and suppressed cell migration and invasion. Melittin inhibited the activities of MMP-2 and MMP-9 and the integrity of cell membrane in AGS cells. Furthermore, Western blotting results showed that melittin decreased the protein expressions of Wnt/BMP and MMP-2 signaling pathways. Based on these observations, melittin inhibited cell migration and invasion of AGS cells through multiple signaling pathways. It may be used to treat metastasized gastric cancers in the future.


2020 ◽  
Vol 21 (6) ◽  
pp. 1968
Author(s):  
Liang Xu ◽  
Yuling Shao ◽  
Lin Ren ◽  
Xiansheng Liu ◽  
Yunyun Li ◽  
...  

Previous studies have shown reduced expression of Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) and its tumor-suppressive role in gastric cancer (GC). However, the precise role of SHIP2 in the migration and invasion of GC cells remains unclear. Here, an IQ motif containing the GTPase-activating protein 2 (IQGAP2) as a SHIP2 binding partner, was screened and identified by co-immunoprecipitation and mass spectrometry studies. While IQGAP2 ubiquitously expressed in GC cells, IQGAP2 and SHIP2 co-localized in the cytoplasm of GC cells, and this physical association was confirmed by the binding of IQGAP2 to PRD and SAM domains of SHIP2. The knockdown of either SHIP2 or IQGAP2 promoted cell migration and invasion by inhibiting SHIP2 phosphatase activity, activating Akt and subsequently increasing epithelial–mesenchymal transition (EMT). Furthermore, knockdown of IQGAP2 in SHIP2-overexpressing GC cells reversed the inhibition of cell migration and invasion by SHIP2 induction, which was associated with the suppression of elevated SHIP2 phosphatase activity. Moreover, the deletion of PRD and SAM domains of SHIP2 abrogated the interaction and restored cell migration and invasion. Collectively, these results indicate that IQGAP2 interacts with SHIP2, leading to the increment of SHIP2 phosphatase activity, and thereby inhibiting the migration and invasion of GC cells via the inactivation of Akt and reduction in EMT.


2001 ◽  
Vol 155 (7) ◽  
pp. 1345-1356 ◽  
Author(s):  
Takamasa Uekita ◽  
Yoshifumi Itoh ◽  
Ikuo Yana ◽  
Hiroshi Ohno ◽  
Motoharu Seiki

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane proteinase that degrades the pericellular extracellular matrix (ECM) and is expressed in many migratory cells, including invasive cancer cells. MT1-MMP has been shown to localize at the migration edge and to promote cell migration; however, it is not clear how the enzyme is regulated during the migration process. Here, we report that MT1-MMP is internalized from the surface and that this event depends on the sequence of its cytoplasmic tail. Di-leucine (Leu571–572 and Leu578–579) and tyrosine573 residues are important for the internalization, and the μ2 subunit of adaptor protein 2, a component of clathrin-coated pits for membrane protein internalization, was found to bind to the LLY573 sequence. MT1-MMP was internalized predominantly at the adherent edge and was found to colocalize with clathrin-coated vesicles. The mutations that disturb internalization caused accumulation of the enzyme at the adherent edge, though the net proteolytic activity was not affected much. Interestingly, whereas expression of MT1-MMP enhances cell migration and invasion, the internalization-defective mutants failed to promote either activity. These data indicate that dynamic turnover of MT1-MMP at the migration edge by internalization is important for proper enzyme function during cell migration and invasion.


Sign in / Sign up

Export Citation Format

Share Document