On frequency independent damping

2004 ◽  
Vol 274 (3-5) ◽  
pp. 653-668 ◽  
Author(s):  
G.B. Muravskii
Author(s):  
Erwin J.G. Janssen ◽  
Dusan Milosevic ◽  
Peter G.M. Baltus ◽  
Arthur H.M. van Roermund ◽  
Hooman Habibi

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4987
Author(s):  
Jianlong Liu ◽  
Xin Li ◽  
Ruirui Jiang ◽  
Kaiqiang Yang ◽  
Jing Zhao ◽  
...  

Terahertz waves are expected to be used in next-generation communications, detection, and other fields due to their unique characteristics. As a basic part of the terahertz application system, the terahertz detector plays a key role in terahertz technology. Due to the two-dimensional structure, graphene has unique characteristics features, such as exceptionally high electron mobility, zero band-gap, and frequency-independent spectral absorption, particularly in the terahertz region, making it a suitable material for terahertz detectors. In this review, the recent progress of graphene terahertz detectors related to photovoltaic effect (PV), photothermoelectric effect (PTE), bolometric effect, and plasma wave resonance are introduced and discussed.


2021 ◽  
Vol 92 (4) ◽  
pp. 043710
Author(s):  
Simon Feigl ◽  
Radovan Vranik ◽  
Bareld Wit ◽  
Stefan Müllegger

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Muñoz-Castañeda ◽  
L. Santamaría-Sanz ◽  
M. Donaire ◽  
M. Tello-Fraile

Abstract In this paper we study the system of a scalar quantum field confined between two plane, isotropic, and homogeneous parallel plates at thermal equilibrium. We represent the plates by the most general lossless and frequency-independent boundary conditions that satisfy the conditions of isotropy and homogeneity and are compatible with the unitarity of the quantum field theory. Under these conditions we compute the thermal correction to the quantum vacuum energy as a function of the temperature and the parameters encoding the boundary condition. The latter enables us to obtain similar results for the pressure between plates and the quantum thermal correction to the entropy. We find out that our system is thermodynamically stable for any boundary conditions, and we identify a critical temperature below which certain boundary conditions yield attractive, repulsive, and null Casimir forces.


Author(s):  
Amin Najafi ◽  
Mohammad Saeed Seif

Determination of high-speed crafts’ hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using Reynolds-averaged Navier–Stokes method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly and requires meticulous laboratory equipment; therefore, utilizing the numerical methods and developing a virtual laboratory seem highly efficient. In this study, the numerical results for hydrodynamic coefficients of a high-speed craft are verified against Troesch’s experimental results. In the following, after determination of hydrodynamic coefficients of a planing catamaran with and without foil, the foil effects on its hydrodynamic coefficients are evaluated. The results indicate that most of the coefficients are frequency-independent especially at high frequencies.


Neuron ◽  
2008 ◽  
Vol 60 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Martha W. Bagnall ◽  
Lauren E. McElvain ◽  
Michael Faulstich ◽  
Sascha du Lac

2009 ◽  
Vol 23 (12n13) ◽  
pp. 2927-2932
Author(s):  
E. A. ASANO

We study properties of the simplest type of electron interferometer, the Mach-Zehnder Interferometer (MZI) in the Integer Quantum Hall (IQH) regime. In this work, in order to analyse the novel experimental results reported by I. Neder et al. [Phys. Rev. Lett.96, 016804 (2006)] which makes questionable the validity of Landauer-Buttiker formalism in the IQH regime, we have derived expressions for tunneling currents through the electronic MZI system whithin the model of quantum dissipation induced by an environment. In this model the MZI system is coupled to a dissipative environment, where the dissipation is introduced by coupling the MZI system to a frequency-independent Ohmic impedance Z(ω) = R.


Author(s):  
Chris D. Kulhanek ◽  
Dara W. Childs

Static and rotordynamic coefficients are measured for a rocker-pivot, tilting-pad journal bearing (TPJB) with 50 and 60% offset pads in a load-between-pad (LBP) configuration. The bearing uses leading-edge-groove direct lubrication and has the following characteristics: 5-pads, 101.6 mm (4.0 in) nominal diameter,0.0814 -0.0837 mm (0.0032–0.0033 in) radial bearing clearance, 0.25 to 0.27 preload, and 60.325 mm (2.375 in) axial pad length. Tests were performed on a floating bearing test rig with unit loads from 0 to 3101 kPa (450 psi) and speeds from 7 to 16 krpm. Dynamic tests were conducted over a range of frequencies (20 to 320 Hz) to obtain complex dynamic stiffness coefficients as functions of excitation frequency. For most test conditions, the real dynamic stiffness functions were well fitted with a quadratic function with respect to frequency. This curve fit allowed for the stiffness frequency dependency to be captured by including an added mass matrix [M] to a conventional [K][C] model, yielding a frequency independent [K][C][M] model. The imaginary dynamic stiffness coefficients increased linearly with frequency, producing frequency-independent direct damping coefficients. Direct stiffness coefficients were larger for the 60% offset bearing at light unit loads. At high loads, the 50% offset configuration had a larger stiffness in the loaded direction, while the unloaded direct stiffness was approximately the same for both pivot offsets. Cross-coupled stiffness coefficients were positive and significantly smaller than direct stiffness coefficients. Negative direct added-mass coefficients were obtained for both offsets, especially in the unloaded direction. Cross-coupled added-mass coefficients are generally positive and of the same sign. Direct damping coefficients were mostly independent of load and speed, showing no appreciable difference between pivot offsets. Cross-coupled damping coefficients had the same sign and were much smaller than direct coefficients. Measured static eccentricities suggested cross coupling stiffness exists for both pivot offsets, agreeing with dynamic measurements. Static stiffness measurements showed good agreement with the loaded, direct dynamic stiffness coefficients.


Sign in / Sign up

Export Citation Format

Share Document