Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam

2009 ◽  
Vol 325 (4-5) ◽  
pp. 686-704 ◽  
Author(s):  
S.K. Dwivedy ◽  
N. Mahendra ◽  
K.C. Sahu
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Kexiang Wei ◽  
Wenming Zhang ◽  
Ping Xia ◽  
Yingchun Liu

The dynamic characteristics and parametric instability of a rotating electrorheological (ER) sandwich beam with rotary oscillation are numerically analyzed. Assuming that the angular velocity of an ER sandwich beam varies harmonically, the dynamic equation of the rotating beam is first derived based on Hamilton's principle. Then the coupling and nonlinear equation is discretized and solved by the finite element method. The multiple scales method is employed to determine the parametric instability of the structures. The effects of electric field on the natural frequencies, loss factor, and regions of parametric instability are presented. The results obtained indicate that the ER material layer has a significant effect on the vibration characteristics and parametric instability regions, and the ER material can be used to adjust the dynamic characteristics and stability of the rotating flexible beams.


2019 ◽  
Vol 209 ◽  
pp. 242-257 ◽  
Author(s):  
Felipe de Souza Eloy ◽  
Guilherme Ferreira Gomes ◽  
Antonio Carlos Ancelotti ◽  
Sebastião Simões da Cunha ◽  
Antonio José Faria Bombard ◽  
...  

2018 ◽  
Vol 18 (11) ◽  
pp. 1850134 ◽  
Author(s):  
S. Bornassi ◽  
H. M. Navazi ◽  
H. Haddadpour

The vibration of a rotating sandwich beam with magnetorheological elastomer (MRE) as a core between two elastic layers is theoretically analyzed in this paper. This study is focused on the bending vibration along the edgewise direction of a sandwich beam of rectangular cross-section, which, to the best of our knowledge, has not been addressed yet. The classical Euler–Bernoulli beam theory is used to model the dynamic behavior of the elastic layers. In the modeling, the effect of the MRE layer is considered by incorporating its shear strains and the inertia due to shear deformation and bending motion. The governing equations of motion of the rotating sandwich beam are derived by using the Ritz method and the Lagrange’s equations. The effects of the applied magnetic field, core layer thickness, rotational speed, setting angle and hub radius on the natural frequencies and the corresponding loss factors are investigated parametrically. The results show the significant effect of the magnetic field intensity and the MRE layer thickness on the modal characteristics of the MRE sandwich beam.


1984 ◽  
Vol 51 (1) ◽  
pp. 159-163 ◽  
Author(s):  
A. K. Mallik ◽  
S. B. Kulkarni ◽  
K. S. Ram

Parametric instability of a periodically supported pipe without and with dynamic absorbers is investigated. A method based on the notion of propagation constant is used. This method requires no prior knowledge of the mode shapes and renders the amount of computation independent of the number of spans. Numerical results are presented for single and two-span pipes. Effective control of the instability regions by means of dynamic absorbers is also demonstrated.


2011 ◽  
Vol 101-102 ◽  
pp. 202-206 ◽  
Author(s):  
Guo Liang Hu ◽  
Miao Guo ◽  
Wei Hua Li

In this study, the MRE was manufactured, and the sandwich beam was also fabricated by treating with MRE between two thin aluminum layers. The experiment test rig was set up to investigate the vibration response of the MRE sandwich beam under non-homogeneous magnetic field. The experimental results show that the MRE sandwich beam had the capabilities of left shifting first natural frequency when the magnetic field was increased in the activated regions. It is also obvious that the first natural frequency of the MRE sandwich beam decreased as the magnetic field that applied on the beam was moved from the clamped end of the beam to the free end of the beam.


Sign in / Sign up

Export Citation Format

Share Document