Analysis of Vibration Characteristics of Magnetorheological Elastomer Sandwich Beam under Non-Homogeneous Magnetic Field

2011 ◽  
Vol 101-102 ◽  
pp. 202-206 ◽  
Author(s):  
Guo Liang Hu ◽  
Miao Guo ◽  
Wei Hua Li

In this study, the MRE was manufactured, and the sandwich beam was also fabricated by treating with MRE between two thin aluminum layers. The experiment test rig was set up to investigate the vibration response of the MRE sandwich beam under non-homogeneous magnetic field. The experimental results show that the MRE sandwich beam had the capabilities of left shifting first natural frequency when the magnetic field was increased in the activated regions. It is also obvious that the first natural frequency of the MRE sandwich beam decreased as the magnetic field that applied on the beam was moved from the clamped end of the beam to the free end of the beam.

2012 ◽  
Vol 512-515 ◽  
pp. 1455-1458 ◽  
Author(s):  
Xin Zhi He ◽  
De Cai Li ◽  
Hai Na Zhang ◽  
Zhi Li Zhang

In order to meet the requirements of the static seal at large diameter in chemical industry, aerospace industry and military industry, we designed a magnetic fluid static seal at large diameter flange and set up a test rig. We studied the effect of magnetic fluid static seal on the test rig. Finally, we obtained the relationship between the anti-pressure capacity and the number of the seal stages. We also calculated the distribution of the magnetic field in the seal gap and the anti-pressure capacity in theory. The theoretical analysis and the experiment result indicate that the design of the magnetic fluid static seal at large diameter flange is feasible and can be used to meet the practical problems.


2010 ◽  
Vol 97-101 ◽  
pp. 1578-1581 ◽  
Author(s):  
Ke Xiang Wei ◽  
Hong You ◽  
Ping Xia

Magnetorheological (MR) elastomers are smart materials whose physical properties can undergo instantaneous and reversible change when subjected to different intensities of the magnetic field. This makes the MR elastomers have wide applications in the fields of vibration control. This work presents the vibration suppression of flexible beams with MR elastomers. An experiment system has been set up to investigate the vibration performances of a sandwich beam filled with MR elastomers. The vibration response of the beam subjected to different magnetic field intensity and excitation frequencies are demonstrated and evaluated. The results obtained indicate that vibration attenuation is achieved at different operating conditions by applying a magnetic field to the beam.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


The distortion of the lines of flow of an electric current in a thin metal plate by the action of a magnetic field was discovered in 1879. Hall attributed this to the action of the magnetic field on the molecular currents in the metal film, which were deflected to one side or the other and accompanied by a corresponding twist of the equipotential lines. This explanation did not pass without criticism, and another theory of the effect found by Hall was published in 1884. In that paper the author seeks to explain the effect by assuming a combination of certain mechanical strains and Peltier effects, a thermo-electric current being set up between the strained and the unstrained portions. The effect of such strain was to produce a reverse effect in some metals, and these were precisely the metals for which the Hall effect was found to reverse. Aluminium was the only exception. In other respects, however, as shown by Hall in a later paper, Bidwell's theory did not stand the test of experiment, and the results lend no support to his theory, while they are in complete accordance withe the explanation that the molecular currents are disturbed by the action of the magnetic field. On the electron theory of metallic conduction, the mechanism of the Hall effect is more obvious, but at present no satisfactory explanation of the reversal found in some metals is known. Further experiments have made it clear that there is a real deflection of the elementary currents, due to the application of the magnetic field, independent of any effect due to strain.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2018 ◽  
Vol 18 (11) ◽  
pp. 1850134 ◽  
Author(s):  
S. Bornassi ◽  
H. M. Navazi ◽  
H. Haddadpour

The vibration of a rotating sandwich beam with magnetorheological elastomer (MRE) as a core between two elastic layers is theoretically analyzed in this paper. This study is focused on the bending vibration along the edgewise direction of a sandwich beam of rectangular cross-section, which, to the best of our knowledge, has not been addressed yet. The classical Euler–Bernoulli beam theory is used to model the dynamic behavior of the elastic layers. In the modeling, the effect of the MRE layer is considered by incorporating its shear strains and the inertia due to shear deformation and bending motion. The governing equations of motion of the rotating sandwich beam are derived by using the Ritz method and the Lagrange’s equations. The effects of the applied magnetic field, core layer thickness, rotational speed, setting angle and hub radius on the natural frequencies and the corresponding loss factors are investigated parametrically. The results show the significant effect of the magnetic field intensity and the MRE layer thickness on the modal characteristics of the MRE sandwich beam.


2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


2017 ◽  
Vol 38 (4) ◽  
pp. 555-565
Author(s):  
Alicja Przybył ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Marian Kordas ◽  
Radosław Drozd ◽  
...  

Abstract The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.


Sign in / Sign up

Export Citation Format

Share Document