Up-cycling of waste paper for increased photo-catalytic hydrogen generation of graphitic carbon nitride under visible light exposure

2021 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Xu Tian ◽  
Mengqi Xue ◽  
Xiaonan Yang ◽  
Daochuan Jiang ◽  
Yupeng Yuan
2015 ◽  
Vol 17 (1) ◽  
pp. 509-517 ◽  
Author(s):  
Jie Chen ◽  
Shaohua Shen ◽  
Po Wu ◽  
Liejin Guo

Nitrogen-doped CeOx nanoparticles modified g-C3N4 was successfully prepared via a one-pot method, which showed significantly enhanced photocatalytic activity for hydrogen generation under visible light compared to the pure g-C3N4 photocatalyst.


2020 ◽  
Vol 12 (3) ◽  
pp. 285-295
Author(s):  
Maha Alhaddad ◽  
R. M. Navarro ◽  
M. A. Hussein ◽  
R. M. Mohamed

In this paper, we introduce an active photocatalyst for hydrogen generation from aqueous glycerol solution on nanoheterojunctions of graphitic carbon nitride (g-C3N4) and Co3O4 at various Co3O4 loading (1∼4 wt.%). The Co3O4 nanoparticulates were efficiently spread on the exterior of exfoliated mesoporous g-C3N4 by means of ultrasonication-mixture method that allowed the formation of effective Co3O4/g-C3N4 heterojunctions that minimized high recombination of charges observed on bare g-C3N4. The formation of nanoheterojunctions amid Co3O4 and g-C3N4 was demonstrated by XPS and HRTEM. Moreover, their number and efficiency in separation of charges depended on Co3O4 loading (maximum efficiency at 3 mol% of Co3O4). The optimal Co3O4/g-C3N4 nanocomposite demonstrated 22.5 and 33.7 times higher H2 production using visible light compared to the parent g-C3N4 and Co3O4 systems, respectively. The differences in photocatalytic action for the Co3O4/g-C3N4 composites was examined in terms of changes in their capacity to engross the light and to diminution the electron-hole recombination associated with different development of nanoheterojunctions in the composites.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Taoreed O. Owolabi ◽  
Mohd Amiruddin Abd Rahman

Graphitic carbon nitride is a stable and distinct two dimensional carbon-based polymeric semiconductor with remarkable potentials in organic pollutants degradation, chemical sensors, the reduction of CO2, water splitting and other photocatalytic applications. Efficient utilization of this material is hampered by the nature of its band gap and the rapid recombination of electron-hole pairs. Heteroatom incorporation due to doping alters the symmetry of the semiconductor and has been among the adopted strategies to tailor the band gap for enhancing the visible-light harvesting capacity of the material. Electron modulation and enhancement of reaction active sites due to doping as evident from the change in specific surface area of doped graphitic carbon nitride is employed in this work for modeling the associated band gap using hybrid genetic algorithm-based support vector regression (GSVR) and extreme learning machine (ELM). The developed GSVR performs better than ELM-SINE (with sine activation function), ELM-TRANBAS (with triangular basis activation function) and ELM-SIG (with sigmoid activation function) model with performance enhancement of 69.92%, 73.59% and 73.67%, respectively, on the basis of root mean square error as a measure of performance. The four developed models are also compared using correlation coefficient and mean absolute error while the developed GSVR demonstrates a high degree of precision and robustness. The excellent generalization and predictive strength of the developed models would ultimately facilitate quick determination of the band gap of doped graphitic carbon nitride and enhance its visible-light harvesting capacity for various photocatalytic applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22652-22660
Author(s):  
Zengyu Cen ◽  
Yuna Kang ◽  
Rong Lu ◽  
Anchi Yu

H2O2 treated K-doped graphitic carbon nitride presents an enhanced visible light absorption, which is due to the electrostatic attraction between K ions and OOH ions inside graphitic carbon nitride.


Sign in / Sign up

Export Citation Format

Share Document