Characterization of Prohibitins in Male Reproductive System and their Expression under Oxidative Stress

2016 ◽  
Vol 195 (4 Part 1) ◽  
pp. 1160-1167 ◽  
Author(s):  
Yan Li ◽  
Hai Y. Wang ◽  
Juan Liu ◽  
Ning Li ◽  
Yan W. Wang ◽  
...  
2013 ◽  
Vol 80 (6) ◽  
pp. 597-608
Author(s):  
Susanne Reitemeier ◽  
Maria Hänse ◽  
Anke Hahn ◽  
Volker Schmidt ◽  
Katrin Steinbach-Sobiraj ◽  
...  

2021 ◽  
pp. 19-27
Author(s):  
S. I. Gamidov ◽  
T. V. Shatylko ◽  
A. Yu. Popova ◽  
N. G. Gasanov ◽  
R. S. Gamidov

Oxidative stress is one of the leading causes of sperm dysfunction. Excessive amounts of reactive oxygen species can damage sperm membranes and disrupt their DNA integrity, which affects not only the likelihood of getting pregnant naturally, but also the clinical outcomes of assisted reproductive technologies and the risk of miscarriage. Sperm cells are extremely vulnerable to oxidative stress, given the limited functional reserve of their antioxidant systems and the DNA repair apparatus. Lifestyle factors, most of which are modifiable, often trigger generation of reactive oxygen species.  Both the lifestyle modification and use of antioxidant dietary supplements are adequate and compatible ways to combat male oxidative stress-associated infertility. The search for other internal and external sources of reactive oxygen species, the identification of the etiology of oxidative stress and treatment of respective diseases are necessary for the successful regulation of redox processes in the male reproductive system in clinical practice, which is required not only to overcome infertility, but also to prevent induced epigenetic disorders in subsequent generations. The article presents the analysis of the molecular mechanisms of male idiopathic infertility. The authors provide an overview of how to prevent oxidative stress as one of the causes of subfebrile fever. The article provides an overview of modern therapeutics, as well as the options for eliminating the consequences of the effect of reactive oxygen species on spermatogenesis and male reproductive system in general.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Zhang ◽  
Tongtong Zhang ◽  
Xiaohan Ren ◽  
Xinglin Chen ◽  
ShangQian Wang ◽  
...  

Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.


Author(s):  
Sutian Wang ◽  
Kunli Zhang ◽  
Yuchang Yao ◽  
Jianhao Li ◽  
Shoulong Deng

Numerous factors trigger male infertility, including lifestyle, the environment, health, medical resources and pathogenic microorganism infections. Bacterial infections of the male reproductive system can cause various reproductive diseases. Several male reproductive organs, such as the testicles, have unique immune functions that protect the germ cells from damage. In the reproductive system, immune cells can recognize the pathogen-associated molecular patterns carried by pathogenic microorganisms and activate the host’s innate immune response. Furthermore, bacterial infections can lead to oxidative stress through multiple signaling pathways. Many studies have revealed that oxidative stress serves dual functions: moderate oxidative stress can help clear the invaders and maintain sperm motility, but excessive oxidative stress will induce host damage. Additionally, oxidative stress is always accompanied by autophagy which can also help maintain host homeostasis. Male reproductive system homeostasis disequilibrium can cause inflammation of the genitourinary system, influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of oxidative stress and autophagy on bacterial infection in the male reproductive system, and we also explore the crosslink between oxidative stress and autophagy during this process.


2018 ◽  
Vol 7 (1) ◽  
pp. 1152-1161
Author(s):  
A.S. Adah ◽  
D.I. Adah ◽  
K.T. Biobaku ◽  
A.B. Adeyemi

Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influences the body of the animal. It is expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on the male reproductive system causing spermatozoa to have decreased motility, morphometric abnormalities, increased peroxidation due to oxidative stress, histological aberrations in the testes and in some cases atrophy of the testicular tissue. This review presents from literature some of effects of electromagnetic radiations on the male reproductive system.Keywords: Electromagnetic Radiations, Male Reproductive System, Animals, Humans


Sign in / Sign up

Export Citation Format

Share Document