scholarly journals Bacterial Infections Affect Male Fertility: A Focus on the Oxidative Stress-Autophagy Axis

Author(s):  
Sutian Wang ◽  
Kunli Zhang ◽  
Yuchang Yao ◽  
Jianhao Li ◽  
Shoulong Deng

Numerous factors trigger male infertility, including lifestyle, the environment, health, medical resources and pathogenic microorganism infections. Bacterial infections of the male reproductive system can cause various reproductive diseases. Several male reproductive organs, such as the testicles, have unique immune functions that protect the germ cells from damage. In the reproductive system, immune cells can recognize the pathogen-associated molecular patterns carried by pathogenic microorganisms and activate the host’s innate immune response. Furthermore, bacterial infections can lead to oxidative stress through multiple signaling pathways. Many studies have revealed that oxidative stress serves dual functions: moderate oxidative stress can help clear the invaders and maintain sperm motility, but excessive oxidative stress will induce host damage. Additionally, oxidative stress is always accompanied by autophagy which can also help maintain host homeostasis. Male reproductive system homeostasis disequilibrium can cause inflammation of the genitourinary system, influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of oxidative stress and autophagy on bacterial infection in the male reproductive system, and we also explore the crosslink between oxidative stress and autophagy during this process.

2021 ◽  
Author(s):  
Fanli Sun ◽  
Xuying Wang ◽  
Pinzheng Zhang ◽  
Ziyun Chen ◽  
Zhiyi Guo ◽  
...  

Abstract BackgroundPuberty is a crucial stage to gain reproductive capacity, but it is also a period vulnerable to exogenous materials. While exposure to nanoparticles (NPs) has been linked to toxic responses in reproductive system in previous findings, little is known about the age-dependent effect of NPs, let alone the underlying mechanism. In the present study, we assessed male fertility parameters and explored its mechanism following intraperitoneal exposure to Nano-Silicon dioxide (Nano-SiO2) in mice during puberty.Methods40 mice aged 5 weeks were divided into 2 groups after 1 week acclimation and then exposed to 40mg/kg Nano-SiO2 dissolved in saline or vehicle controls by intraperitoneal injection every day over a period of 7-day, respectively. Changes in the structure and function of male reproductive organs were detected after exposure.ResultsNano-SiO2 exposed through intraperitoneal injection could cause damage to the testicular and epididymal histological architecture and reduce the level of sex hormone (testosterone), leading to a decrease in sperm quality and quantity. Furthermore, Nano-SiO2 could induce oxidative stress and inflammation in male reproductive tissues, indicated by reduced activity of antioxidants (superoxide dismutase, SOD) and increased level of the lipid peroxidation marker (malondialdehyde, MDA), which leads to the activation of cell apoptosis.ConclusionExposure to Nano-SiO2 in pubertal mice could cause toxicity on male reproductive system via inducing oxidative stress and activating TNF-α mediated apoptotic pathway.


2010 ◽  
Vol 30 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Keira Melican ◽  
Jorrit Boekel ◽  
Monica Ryden-Aulin ◽  
Agneta Richter-Dahlfors

2021 ◽  
Vol 22 (15) ◽  
pp. 8296
Author(s):  
Rüdiger Hardeland

Melatonin interacts in multiple ways with microglia, both directly and, via routes of crosstalk with astrocytes and neurons, indirectly. These effects of melatonin are of relevance in terms of antioxidative protection, not only concerning free-radical detoxification, but also in prevention of processes that cause, promote, or propagate oxidative stress and neurodegeneration, such as overexcitation, toxicological insults, viral and bacterial infections, and sterile inflammation of different grades. The immunological interplay in the CNS, with microglia playing a central role, is of high complexity and includes signaling toward endothelial cells and other leukocytes by cytokines, chemokines, nitric oxide, and eikosanoids. Melatonin interferes with these processes in multiple signaling routes and steps. In addition to canonical signal transduction by MT1 and MT2 melatonin receptors, secondary and tertiary signaling is of relevance and has to be considered, e.g., via the upregulation of sirtuins and the modulation of pro- and anti-inflammatory microRNAs. Many details concerning the modulation of macrophage functionality by melatonin are obviously also applicable to microglial cells. Of particular interest is the polarization toward M2 subtypes instead of M1, i.e., in favor of being anti-inflammatory at the expense of proinflammatory activities, which is well-documented in macrophages but also applies to microglia.


2021 ◽  
pp. 19-27
Author(s):  
S. I. Gamidov ◽  
T. V. Shatylko ◽  
A. Yu. Popova ◽  
N. G. Gasanov ◽  
R. S. Gamidov

Oxidative stress is one of the leading causes of sperm dysfunction. Excessive amounts of reactive oxygen species can damage sperm membranes and disrupt their DNA integrity, which affects not only the likelihood of getting pregnant naturally, but also the clinical outcomes of assisted reproductive technologies and the risk of miscarriage. Sperm cells are extremely vulnerable to oxidative stress, given the limited functional reserve of their antioxidant systems and the DNA repair apparatus. Lifestyle factors, most of which are modifiable, often trigger generation of reactive oxygen species.  Both the lifestyle modification and use of antioxidant dietary supplements are adequate and compatible ways to combat male oxidative stress-associated infertility. The search for other internal and external sources of reactive oxygen species, the identification of the etiology of oxidative stress and treatment of respective diseases are necessary for the successful regulation of redox processes in the male reproductive system in clinical practice, which is required not only to overcome infertility, but also to prevent induced epigenetic disorders in subsequent generations. The article presents the analysis of the molecular mechanisms of male idiopathic infertility. The authors provide an overview of how to prevent oxidative stress as one of the causes of subfebrile fever. The article provides an overview of modern therapeutics, as well as the options for eliminating the consequences of the effect of reactive oxygen species on spermatogenesis and male reproductive system in general.


Author(s):  
Gilead Ebiegberi Forcados ◽  
Aliyu Muhammad ◽  
Olusola Olalekan Oladipo ◽  
Sunday Makama ◽  
Clement Adebajo Meseko

COVID-19 is a zoonotic disease with devastating economic and public health impacts globally. Being a novel disease, current research is focused on a clearer understanding of the mechanisms involved in its pathogenesis and viable therapeutic strategies. Oxidative stress and inflammation are intertwined processes that play roles in disease progression and response to therapy via interference with multiple signaling pathways. The redox status of a host cell is an important factor in viral entry due to the unique conditions required for the conformational changes that ensure the binding and entry of a virus into the host cell. Upon entry into the airways, viral replication occurs and the innate immune system responds by activating macrophage and dendritic cells which contribute to inflammation. This review examines available literature and proposes mechanisms by which oxidative stress and inflammation could contribute to COVID-19 pathogenesis. Further, certain antioxidants currently undergoing some form of trial in COVID-19 patients and the corresponding required research gaps are highlighted to show how targeting oxidative stress and inflammation could ameliorate COVID-19 severity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Zhang ◽  
Tongtong Zhang ◽  
Xiaohan Ren ◽  
Xinglin Chen ◽  
ShangQian Wang ◽  
...  

Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.


1962 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
NN Tait

This paper is an account of the anatomy of the larval and adult stages of the sawfly Perga affinis affinis Kirby. Particular attention has been paid to those structures that seem relevant to the ecology of the animal. In this respect, this work is supplementary to that of Carne (1962) on the ecology of this insect. The external features of the larva and adult are described. Measurements of head capsules of the larvae showed that these could be employed as a method of identifying the various instars. From observations made by Carne (op. cit.) it is probable that the species breeds parthenogenetically. However, the male reproductive system appears quite functional. The structure and musculature of the ovipositor is described, as well as the internal reproductive organs. The muscles of the thorax are compared with those described by Snodgrass (1927) in the generalized insect and by Tiegs (1955) in the various orders. In P. affinis affinis the prothoracic muscles are modified for the movement of the head and prepectus. The development of flight muscles is greatest in the mesothorax where the indirect flight muscles almost completely fill the cavity. The indirect flight muscles of the metathorax are poorly developed. The muscles are composed of numerous fibres. There has been no reduction and enlargement of the fibres as in the Diptera. The coxal muscles have become separated from the flight muscles and are confined to the sterna and furcae.


Sign in / Sign up

Export Citation Format

Share Document