Mercury content and speciation in the Phlegrean Fields volcanic complex: Evidence from hydrothermal system and fumaroles

2009 ◽  
Vol 187 (3-4) ◽  
pp. 250-260 ◽  
Author(s):  
E. Bagnato ◽  
F. Parello ◽  
M. Valenza ◽  
S. Caliro
2022 ◽  
Vol 117 (1) ◽  
pp. 25-55
Author(s):  
Stephanie Lohmeier ◽  
Bernd Lehmann ◽  
Albrecht Schneider ◽  
Andrew Hodgkin ◽  
Raymond Burgess

Abstract The El Volcán gold project (8.9 Moz Au @ 0.71 g/t Au) is located in the Maricunga gold belt in northern Chile, on the flank of the large Cenozoic Copiapó Volcanic Complex. Precious metal mineralization is hosted in two zones (Dorado and Ojo de Agua) of (pervasively) altered Miocene porphyry intrusions and lava flows of andesitic to rhyolitic composition, and in breccias. The ore zones reflect an evolving magmatic-hydrothermal system with mineral assemblages of magnetite-ilmenite-pyrite-molybdenite (early), bornite-chalcopyrite-pyrite-rutile (stage I), chalcocite-chalcopyrite-enargite-fahlore-pyrite (stage II), and chalcopyrite-covellite-pyrite (stage III). Alteration is dominantly of Maricunga-style (illite-smectite-chlorite ± kaolinite), partly obscured by quartz-kaolinite-alunite ± illite ± smectite alteration. Powdery quartz-alunite-kaolinite alteration with native sulfur and cinnabar forms shallow steam-heated zones. Early K-feldspar ± biotite alteration is preserved only in small porphyry cores and in deep drill holes. Most gold is submicrometer size and is in banded quartz veinlets, which are characteristic of the Maricunga gold belt. However, some gold is disseminated in zones of pervasive quartz-kaolinite-alunite alteration, with and without banded quartz veinlets. Minor visible gold is related to disseminated chalcocite-chalcopyrite-enargite-fahlore-pyrite. The lithogeochemical database identifies a pronounced Au-Te-Re signature (>100× bulk crust) of the hydrothermal system. Molybdenum-rich bulk rock (100–400 ppm Mo) has an Re-Os age of 10.94 ± 0.17 Ma (2σ). 40Ar-39Ar ages on deep K-feldspar alteration and on alunite altered rock have the same age within error and yield a combined age of 11.20 ± 0.25 Ma (2σ). The formation of the El Volcán gold deposit took place during the establishment of the Chilean flat-slab setting in a time of increasing crustal thickness when hydrous magmas were formed in a mature arc setting. The vigorous nature of the hydrothermal system is expressed by abundant one-phase vapor fluid inclusions recording magmatic vapor streaming through a large rock column with a vertical extent of ≥1,500 m.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Jentsch ◽  
Walter Duesing ◽  
Egbert Jolie ◽  
Martin Zimmer

AbstractCarbon dioxide is the most abundant, non-condensable gas in volcanic systems, released into the atmosphere through either diffuse or advective fluid flow. The emission of substantial amounts of CO2 at Earth’s surface is not only controlled by volcanic plumes during periods of eruptive activity or fumaroles, but also by soil degassing along permeable structures in the subsurface. Monitoring of these processes is of utmost importance for volcanic hazard analyses, and is also relevant for managing geothermal resources. Fluid-bearing faults are key elements of economic value for geothermal power generation. Here, we describe for the first time how sensitively and quickly natural gas emissions react to changes within a deep hydrothermal system due to geothermal fluid reinjection. For this purpose, we deployed an automated, multi-chamber CO2 flux monitoring system within the damage zone of a deep-rooted major normal fault in the Los Humeros Volcanic Complex (LHVC) in Mexico and recorded data over a period of five months. After removing the atmospheric effects on variations in CO2 flux, we calculated correlation coefficients between residual CO2 emissions and reinjection rates, identifying an inverse correlation of ρ = − 0.51 to − 0.66. Our results indicate that gas emissions respond to changes in reinjection rates within 24 h, proving an active hydraulic communication between the hydrothermal system and Earth’s surface. This finding is a promising indication not only for geothermal reservoir monitoring but also for advanced long-term volcanic risk analysis. Response times allow for estimation of fluid migration velocities, which is a key constraint for conceptual and numerical modelling of fluid flow in fracture-dominated systems.


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2549-2556
Author(s):  
Gianluca Norini ◽  
Gianluca Groppelli

Abstract. A multiple shallow-seated magmatic intrusion model has been proposed by Urbani et al. (2020) for the resurgence of the Los Potreros caldera floor, in the Los Humeros volcanic complex (LHVC). This model predicts (1) the occurrence of localized bulges in the otherwise undeformed caldera floor, and (2) that the faults corresponding to different bulges exhibit different spatial and temporal evolution. Published data and a morphological analysis show that these two conditions are not met at Los Potreros caldera. A geothermal well (H4), located at the youngest supposed bulge (Loma Blanca) for which Urbani et al. (2020) calculated an intrusion depth (425±170 m), does not show any thermal and lithological evidence of such a shallow-seated cryptodome. Finally, published stratigraphic data and radiometric dating disprove the proposed common genesis of Holocene resurgence faulting and viscous lavas extruded in the centre of the caldera. Even if recent shallow intrusions do exist in the area, published data indicate that the pressurization of the LHVC magmatic–hydrothermal system driving resurgence faulting occurs at greater depth. Thus, we suggest that the model and calculation proposed by Urbani et al. (2020) are unlikely to have any relevance to the location, age and emplacement depth of magma intrusions driving resurgence at the Los Potreros caldera.


Sign in / Sign up

Export Citation Format

Share Document