Mantle source characteristics and melting models for the early-middle Miocene mafic volcanism in Western Anatolia: Implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings

2010 ◽  
Vol 198 (1-2) ◽  
pp. 112-128 ◽  
Author(s):  
E. Yalçın Ersoy ◽  
Cahit Helvacı ◽  
Martin R. Palmer
2021 ◽  
Author(s):  
Biltan Kurkcuoglu ◽  
Tekin Yürür

<p>Extensive magmatic activities were developed in  Central and Western Anatolia,  since middle miocene to quaternary times,   the most primitive lavas are situated in eastern end of Central (Sivas) and also western (Kula) Anatolia, besides Kula basalts are  one of the most recent basaltic rocks together with  basalts  from south-central Anatolia.   Although the magmatism is generally   observed at several different  locations, the recent   basaltic rocks in both of the regions   seem to be derived from  the melting  of the peridotite and pyroxenite  source  domains and the latter one  was ignored in previous studies as source component.</p><p> The previous studies indicate that many of the basaltic rocks from Central and Western Anatolia  are related with spinel-garnet transition, but typical Tb/Yb(N) (>1.8; [1]) and Zn/Fe   (separates peridotite-derived (Zn/Fe <12; [2]) and pyroxenite-derived (Zn/Fe 13-20); [2] melts)  Co/Fe  ratios of the basaltic rocks from  several volcanic centers from Central and Western Anatolia  reveal that   melting from the single  source component  are not solely capable of  the producing  basaltic  rocks. </p><p> Sr-Nd and Pb isotopic  compositions  clearly display the distinction  of samples which are  linked to    asthenospheric source. The lead isotopic systematic  shows  no siginificant differences  among the Central and Western Anatolian basalts,  of all the samples are above the NHRL line and close to EM II  mantle component,  Sr- Nd  isotopes  also display similar compositions as well, the majority of the samples are in and close to mantle array,   but the  Sr isotopic composition   of  Miocene aged  Gediz and Simav lavas have high radiogenic values. </p><p>Tb/Yb(N),  Zn/Fe ratios  and   as well as the Pb isotopic  compositions and REE-based melting model reveal  that Sivas, Erciyes Hasandağ, and Develidağ samples in central Anatolia,  and Kula, Gediz basalt in western Anatolia  seem to be  derived from the amalgamated melting of  pyroxenite and peridotite sources,   besides,  the sources melting is capable of  the producing     elemental variations in  basaltic rocks related with either lithospheric delamination or lithospheric  unstability</p><ul><li>1.Wang et al., 2002, J.Geophys.Res.vol:107,ECV 5 1-21</li> <li>2 .Le Roux, et al.,2011,EPSL, vol:307, 395-408</li> </ul><p>This study is financially supported by Hacettepe University, BAB project no: FHD-2018-17283</p><p> </p>


2016 ◽  
Vol 53 (11) ◽  
pp. 1142-1157 ◽  
Author(s):  
Jean-Pierre Brun ◽  
Claudio Faccenna ◽  
Frédéric Gueydan ◽  
Dimitrios Sokoutis ◽  
Mélody Philippon ◽  
...  

Back-arc extension in the Aegean, which was driven by slab rollback since 45 Ma, is described here for the first time in two stages. From Middle Eocene to Middle Miocene, deformation was localized leading to (i) the exhumation of high-pressure metamorphic rocks to crustal depths, (ii) the exhumation of high-temperature metamorphic rocks in core complexes, and (iii) the deposition of sedimentary basins. Since Middle Miocene, extension distributed over the whole Aegean domain controlled the deposition of onshore and offshore Neogene sedimentary basins. We reconstructed this two-stage evolution in 3D and four steps at Aegean scale by using available ages of metamorphic and sedimentary processes, geometry, and kinematics of ductile deformation, paleomagnetic data, and available tomographic models. The restoration model shows that the rate of trench retreat was around 0.6 cm/year during the first 30 My and then accelerated up to 3.2 cm/year during the last 15 My. The sharp transition observed in the mode of extension, localized versus distributed, in Middle Miocene correlates with the acceleration of trench retreat and is likely a consequence of the Hellenic slab tearing documented by mantle tomography. The development of large dextral northeast–southwest strike-slip faults, since Middle Miocene, is illustrated by the 450 km long fault zone, offshore from Myrthes to Ikaria and onshore from Izmir to Balikeshir, in Western Anatolia. Therefore, the interaction between the Hellenic trench retreat and the westward displacement of Anatolia started in Middle Miocene, almost 10 Ma before the propagation of the North Anatolian Fault in the North Aegean.


2020 ◽  
Vol 29 (7) ◽  
pp. 1049-1072
Author(s):  
Utku BAĞCI ◽  
Tamer RIZAOĞLU ◽  
Güzide ÖNAL ◽  
Osman PARLAK

The Antalya Complex in southern Turkey comprises a number of autochthonous and allochthonous units that originated from the Southern Neotethys. Late Triassic volcanic rocks are widespread in the Antalya Complex and are important for the onset of the rifting stage of the southern Neotethys. The studied Late Triassic volcanic rocks within the Antalya Complex are exposed in the southern part of Saklıkent (Antalya) region. They are represented by pillow, massive, and columnar-jointed lava flows with volcaniclastic breccias and pelagic limestone intercalations. Spilitic basalts exhibit intersertal, microlithic porphyritic, and ophitic textures and are represented by plagioclase, pyroxene, and olivine. Secondary phases are characterized by serpentine, calcite, chlorite, epidote, zeolite, and quartz. Based on Zr/Ti vs. Nb/Y ratios, the volcanic rocks are represented by alkaline basalts (Nb/Y = 1.54–2.82). A chondrite normalized REE diagram for the volcanic rocks displays significant LREE enrichment with respect to HREE ([La/Yb]N = 15.14–19.77). Trace element geochemistry of the studied rocks suggests that these rocks are more akin to ocean island basalt (OIB) and were formed by small degrees (~2–4%) of partial melting of an enriched mantle source (spinel + garnet-bearing lherzolite). The volcanic rocks of the Saklıkent region exhibit similarities to the Late Triassic volcanics of the Koçali Complex in SE Anatolia and the Mamonia Complex (Cyprus) in terms of their geochemical features. All evidence suggests that the Late Triassic alkaline volcanics in Antalya, Mamonia (Cyprus), and the Koçali (Adıyaman) Complexes were formed in an extensional environment at the continent-ocean transition zone during the rifting of the southern Neotethyan Ocean.


2018 ◽  
Vol 112 (S2) ◽  
pp. 653-672 ◽  
Author(s):  
Chiranjeeb Sarkar ◽  
Bruce A. Kjarsgaard ◽  
D. Graham Pearson ◽  
Larry M. Heaman ◽  
Andrew J. Locock ◽  
...  

2008 ◽  
Vol 145 (4) ◽  
pp. 570-585 ◽  
Author(s):  
CÜNEYT AKAL

AbstractMiddle Miocene volcanic activity in the Afyon volcanic province (eastern part of Western Anatolia) is characterized by multistage potassic and ultrapotassic alkaline volcanic successions. The volcanism is generally related to the northward subduction of the African plate beneath the Eurasian Plate. In Afyon, the Middle Miocene volcanic products consist of melilite leucitite, tephriphonolite, trachyte, basaltic–trachyandesite, phonolite, phonotephrite, tephriphonolite and lamproite rocks. Near-surface emplacement and relatively quiescent subaerial eruptions of lamproitic magma produced different emplacement forms such as dome/plug-shaped bodies and lava flows, showing variation in volume and texture. The mineralogical constituents of the lamproites are sanidine, olivine (77 < Mg no. < 81), phlogopite (74 < Mg no. < 78), K-richterite, clinopyroxene (74 < Mg no. < 78), with accessory apatite, calcite and opaque minerals. Afyon lamproites resemble Mediterranean-type Si-rich lamproites. Their compositional range is 50–52 wt% SiO2, 4–8 wt% MgO, and they display a typical lamproitic affinity. Chondrite-normalized REE patterns exhibit enrichment in LREE relative to HREE ((La/Yb)CN=15.3–17.0). They show extreme enrichment in LILE relative to primitive mantle values and troughs of Nb and Ti. The lamproites give a range of high initial87Sr/86Sr ratios and low143Nd/144Nd ratios. The geochemical and isotopic characteristics suggest that lamproitic magma is derived from highly metasomatized mantle. The enrichment history may include metasomatic events related to subduction, as in other active orogenic areas of the Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document