scholarly journals The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration

2016 ◽  
Vol 53 (11) ◽  
pp. 1142-1157 ◽  
Author(s):  
Jean-Pierre Brun ◽  
Claudio Faccenna ◽  
Frédéric Gueydan ◽  
Dimitrios Sokoutis ◽  
Mélody Philippon ◽  
...  

Back-arc extension in the Aegean, which was driven by slab rollback since 45 Ma, is described here for the first time in two stages. From Middle Eocene to Middle Miocene, deformation was localized leading to (i) the exhumation of high-pressure metamorphic rocks to crustal depths, (ii) the exhumation of high-temperature metamorphic rocks in core complexes, and (iii) the deposition of sedimentary basins. Since Middle Miocene, extension distributed over the whole Aegean domain controlled the deposition of onshore and offshore Neogene sedimentary basins. We reconstructed this two-stage evolution in 3D and four steps at Aegean scale by using available ages of metamorphic and sedimentary processes, geometry, and kinematics of ductile deformation, paleomagnetic data, and available tomographic models. The restoration model shows that the rate of trench retreat was around 0.6 cm/year during the first 30 My and then accelerated up to 3.2 cm/year during the last 15 My. The sharp transition observed in the mode of extension, localized versus distributed, in Middle Miocene correlates with the acceleration of trench retreat and is likely a consequence of the Hellenic slab tearing documented by mantle tomography. The development of large dextral northeast–southwest strike-slip faults, since Middle Miocene, is illustrated by the 450 km long fault zone, offshore from Myrthes to Ikaria and onshore from Izmir to Balikeshir, in Western Anatolia. Therefore, the interaction between the Hellenic trench retreat and the westward displacement of Anatolia started in Middle Miocene, almost 10 Ma before the propagation of the North Anatolian Fault in the North Aegean.

2017 ◽  
Vol 50 (1) ◽  
pp. 5 ◽  
Author(s):  
J.-P. Brun ◽  
C. Faccenna ◽  
F. Gueydan ◽  
D. Sokoutis ◽  
M. Philippon ◽  
...  

Aegean extension is a process driven by slab rollback that, since 45 Ma, shows a twostage evolution. From Middle Eocene to Middle Miocene it is accommodated by localized deformation leading to i) the exhumation of high-pressure metamorphic rocks from mantle to crustal depths, ii) the exhumation of high-temperature rocks in core complexes and iii) the deposition of Paleogene sedimentary basins. Since Middle Miocene, extension is distributed over the whole Aegean domain giving a widespread development of onshore and offshore Neogene sedimentary basins. We reconstructed this two-stage evolution in 3D at Aegean scale by using available ages of metamorphic and sedimentary processes, geometry and kinematics of ductile deformation, paleomagnetic data and available tomographic models. The restorationmodel shows that the rate of trench retreat was around 0.6 cm/y during the first 30 My and then accelerated up to 3.2 cm/y during the last 15 My. The sharp transition observed in the mode of extension, localized versus distributed, which occurred in Middle Miocene correlates with the acceleration of trench retreat and is more likely a consequence of the Hellenic slab tearing documented by mantle tomography. The development of large dextral NE-SW strike-slip faults during the second stage of Aegean extension, since Middle Miocene, is illustrated by the 450 Km-long fault, recently put in evidence, offshore from Myrthes to Ikaria and onshore from Izmir to Balikeshir, in western Anatolia. Therefore, the interaction between the Hellenic trench retreat and the westward displacement of Anatolia started in Middle Miocene,almost 10 Ma before the propagation of the North Anatolian Fault in the North Aegean. This raises a fundamental issue concerning the dynamic relationship between slab tearing and Anatolia displacement.


Author(s):  
Alan Graham

During the Middle Miocene through the Pliocene the Appalachian Mountains underwent continued erosion and approached modern elevations. The Rocky Mountains had undergone uplift to half or more of their present elevation during the Late Cretaceous to Middle Eocene Laramide Revolution; after a lull during the Middle Eocene through the Early Miocene, there was increased tectonic activity beginning ~12 Ma and especially between 7 and 4 Ma. Locally some highlands may have approached or attained modern elevations. The increasingly high mountains and plateaus of Asia and North America deflected the major air streams southward, bringing colder polar air into the middle latitudes of North America. An extensive Antarctic ice sheet further cooled ocean waters and contributed to the spread of seasonally dry climates. The elimination of most of the Asian exotics from the North American flora dates to the Late Miocene-Pliocene as a result of a decline in summer rainfall. The Sierra Nevada attained about two-thirds of their present elevation within the past 10 Ma. They were appreciably elevated at ~5 Ma, stood at ~2100 m at 3 Ma, and have risen ~950 m since 3 Ma (Huber, 1981). The California Coast Ranges and Cascade Mountains attained significant heights by 3 Ma, and there was a rapid rise of the Alaska Range at ~6 Ma. Temperatures increased between ~18 and 16 Ma. In the absence of major plate reorganization and intense volcanic activity and with increased erosion from continued replacement of the dense evergreen forest by deciduous forest and shrubland (increasing albedo), atmospheric CO2 concentration decreased and a sharp lowering of temperature occurred in the Middle Miocene between 15 and 10 Ma. Eolian dust deposits increased in the Late Cenozoic, suggesting greater aridity (Rea et al., 1985). This is supported by kaolinite records from North Atlantic deep sea sediments (Chamley, 1979). At ~4.8~4.9 Ma global cooling and a marine regression of ~40~50 m combined to isolate the Mediterranean Basin from the ocean and to concentrate large volumes of salt as water evaporated. The biota was destroyed, giving rise to the term Messinian salinity crisis.


1992 ◽  
Vol 29 (4) ◽  
pp. 793-811 ◽  
Author(s):  
Charles J. Greig

The Eagle Plutonic Complex is an elongate north-northwest-trending body of deformed Middle to Late Jurassic and middle Cretaceous rocks which underlies the southwestern margin of the Intermontane terrane. New mapping of the complex and its country rocks, in concert with geochronometry, has defined episodes of contractional, ductile deformation in the Middle to Late Jurassic and middle Cretaceous, as well as brittle deformation in Tertiary time. Synkinematic Middle to Late Jurassic Eagle tonalite at the eastern margin of the Eagle Complex intrudes mylonitic Nicola Group rocks and structurally overlies them along a southwest-dipping belt of high strain (Eagle shear zone) with a structural thickness of > 1 km and a strike length of > 100 km. In the central and western Eagle Complex, Eagle tonalite grades into tonalite orthogneiss (Eagle gneiss), and both are crosscut by mid-Cretaceous, muscovite-bearing plutons of the Fallslake Plutonic Suite. Fallslake Suite rocks are themselves ductilely deformed along the Pasayten fault, which bounds the Eagle Complex on the west and was active mainly in the mid-Cretaceous (ductile deformation with sinistral, east-side-up, reverse displacement). The Jurassic and Cretaceous episodes of deformation may reflect the respective initial and final stages of the accretion of the Insular terrane to the North American margin. West of the Pasayten fault, Middle to Late Jurassic and older(?) rocks of the Zoa Complex are structurally overlain, in part, by deformed Middle Eocene and middle Cretaceous sedimentary rocks. In the north, the Middle Eocene rocks are intruded on their west side by the Middle Eocene Needle Peak pluton.


2021 ◽  
Vol 67 (4) ◽  
pp. 382-393
Author(s):  
L. G. Leitchenkov ◽  
V. V. Minina ◽  
Yu. B. Guseva

The sedimentary basins of the north-western Weddell Sea are characterized by a variety of contourite drifts. This study is aimed at their identification, spatial mapping and temporal evolution and based on the integration of a large amount of seismic data collected by different countries including the recent data of the Russian Antarctic Expedition. Most of the drifts in the region being studied are classified as separated, confined, plastered or sheeted. The chain of sediment wave fields is mapped in the western and northern Powell Basin. The earliest contourite drifts started to form in the Early Miocene or, possibly, in the Late Oligocene. The changes in the depositional pattern in the Middle Miocene and then in the Late Pliocene are thought to have resulted from successive intensification of the bottom currents.


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Byung-Choon Lee ◽  
Weon-Seo Kee ◽  
Uk-Hwan Byun ◽  
Sung-Won Kim

In this study, petrological, structural, geochemical, and geochronological analyses of the Statherian alkali feldspar granite and porphyritic alkali feldspar granite in the southwestern part of the Korean Peninsula were conducted to examine petrogenesis of the granitoids and their tectonic setting. Zircon U-Pb dating revealed that the two granites formed around 1.71 Ga and 1.70–1.68 Ga, respectively. The results of the geochemical analyses showed that both of the granites have a high content of K2O, Nb, Ta, and Y, as well as high FeOt/MgO and Ga/Al ratios. Both granites have alkali-calcic characteristics with a ferroan composition, indicating an A-type affinity. Zircon Lu-Hf isotopic compositions yielded negative εHf(t) values (−3.5 to −10.6), indicating a derivation from ancient crustal materials. Both granite types underwent ductile deformation and exhibited a dextral sense of shear with a minor extension component. Based on field relationships and zircon U-Pb dating, it was considered that the deformation event postdated the emplacement of the alkali feldspar granite and terminated soon after the emplacement of the porphyritic alkali feldspar granite in an extensional setting. These data indicated that there were extension-related magmatic activities accompanying ductile deformation in the southwestern part of the Korean Peninsula during 1.71–1.68 Ga. The Statherian extension-related events are well correlated with those in the midwestern part of the Korean and eastern parts of the North China Craton.


Author(s):  
Ümitcan Erbil ◽  
Aral I. Okay ◽  
Aynur Hakyemez

AbstractLate Cenozoic was a period of large-scale extension in the Aegean. The extension is mainly recorded in the metamorphic core complexes with little data from the sedimentary sequences. The exception is the Thrace Basin in the northern Aegean, which has a continuous record of Middle Eocene to Oligocene marine sedimentation. In the Thrace Basin, the Late Oligocene–Early Miocene was characterized by north-northwest (N25°W) shortening leading to the termination of sedimentation and formation of large-scale folds. We studied the stratigraphy and structure of one of these folds, the Korudağ anticline. The Korudağ anticline has formed in the uppermost Eocene–Lower Oligocene siliciclastic turbidites with Early Oligocene (31.6 Ma zircon U–Pb age) acidic tuff beds. The turbidites are underlain by a thin sequence of Upper Eocene pelagic limestone. The Korudağ anticline is an east-northeast (N65°E) trending fault-propagation fold, 9 km wide and 22 km long and with a subhorizontal fold axis. It is asymmetric with shallowly-dipping northern and steeply-dipping southern limbs. Its geometry indicates about 1 km of shortening in a N25°W direction. The folded strata are unconformably overlain by Middle Miocene continental sandstones, which constrain the age of folding. The Korudağ anticline and other large folds in the Thrace Basin predate the inception of the North Anatolian Fault (NAF) by at least 12 myr. The Late Oligocene–Early Miocene (28–17 Ma) shortening in the Thrace Basin and elsewhere in the Balkans forms an interlude between two extensional periods, and is probably linked to changes in the subduction dynamics along the Hellenic trench.


2011 ◽  
Vol 119 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Yuanbao Wu ◽  
Shan Gao ◽  
Xiaochi Liu ◽  
Jing Wang ◽  
Min Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document